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1. Introduction 

 

The grey water footprint (GWF) is an indicator of the water volume needed to assimilate a pollutant load that 

reaches a water body. As an indicator of water resources appropriation through pollution, it provides a tool to 

help assess the sustainable, efficient and equitable use of water resources. The application of the GWF by 

different stakeholders (from companies to environmental ngo’s and governmental institutions) has shown its 

diverse usability as an indicator for water resource management. 

 

The GWF is defined as part of the global water footprint standard in The Water Footprint Assessment Manual 

(Hoekstra et al., 2011). The GWF is an indicator of the amount of freshwater pollution that can be associated 

with an activity. The GWF of a product will depend on the GWFs of the different steps of its full production and 

supply chain. The GWF is defined as the volume of freshwater that is required to assimilate a load of pollutants 

to a freshwater body, based on natural background concentrations and existing ambient water quality standards. 

The GWF is calculated as the volume of water that is required to dilute pollutants (chemical substances) to such 

an extent that the quality of the water remains above agreed ambient water quality standards. 

 

The Water Footprint Assessment Manual recommends a three-tier approach for estimating diffuse pollution 

loads entering a water body. The three-tier approach was the outcome of the Grey Water Footprint Working 

Group of the Water Footprint Network (WFN) in 2010 and is analogue to the tier approach proposed by the 

Intergovernmental Panel on Climate Change for estimating greenhouse gas emissions (IPCC, 2006). From tier 1 

to 3, the accuracy of estimating the load reaching a water body increases, but the feasibility of carrying out the 

analysis decreases because of the increasing data demand. 

 

Tier 1 simply uses a leaching-runoff fraction to translate data on the amount of a chemical substance applied to 

the soil to an estimate of the amount of the substance entering the groundwater or surface water system. The 

fraction is to be derived from existing literature and will depend on the chemical considered. This tier-1 estimate 

is sufficient for a first rough estimate, but obviously does not describe the different pathways of a chemical 

substance from the soil surface to surface or groundwater and the interaction and transformation of different 

chemical substances in the soil or along its flow path. 

 

Tier 2 applies standardized and simplified model approaches and can be used based on relatively easily 

obtainable data (such as the chemical properties of the chemical substance considered and the topographic, 

climatic, hydrologic and soil characteristics of the environment in which the chemical substance is applied). 

These simple and standardized model approaches should be derived from more advanced and validated models. 

 

Tier 3 uses sophisticated modelling techniques and/or intensive measurement approaches. Since this approach is 

very laborious, available resources should allow for it and the purpose of application should warrant it. Whereas 

detailed physically-based models of contaminant flows through soils are available, their complexity often 

renders them inappropriate even for use at tier-3 level. However, validated empirical models driven by 
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information on farm practices and data on soil and weather characteristics are presently available for use in 

diffuse-load studies at this level. 

 

Up to date, GWF studies have been based on the tier-1 level and also in the near future this is expected to 

remain so, at least in practical applications by business and governments. Although it is the most feasible 

approach of the three tiers, practical applications have often been hampered by lack of guidance and reference 

values. Values chosen for leaching-runoff fractions used in the calculations were often based on limited 

information and assumptions. These studies have shown that the GWF methodology as described in The Water 

Footprint Assessment Manual (Hoekstra et al., 2011) could be reinforced through expert guidance on how to 

best estimate the values of the leaching-runoff fractions. 

 

This has been the reason for WFN to develop the tier 1 supporting guidelines as presented in this report. In order 

to obtain the necessary expert inputs and feedback, a panel of experts was formed. The GWF Expert Panel 

contributed to this guidance document by advising on key issues that must be addressed when estimating a 

GWF at the tier 1 level. The report addresses three subjects: (i) how to estimate leaching-runoff fractions 

depending on the chemical substance, environmental conditions and application practice; (ii) what water quality 

standards (maximum allowable concentrations) to use in the calculations; and (iii) what to assume regarding 

natural background concentrations. 

 

These guidelines support GWF accounting at its simplest level, using the least detailed approach to estimate the 

GWF in the case of diffuse and direct pollution. Although these guidelines are meant to support GWF 

accounting at the simplest level, it was quite a task to create guidelines that can be relatively easily applied 

globally by different stakeholders for different forms of pollution and still be scientifically acceptable. These 

guidelines are recommended only as a default method, as a screening level method, to be used if time and 

resources do not allow a more detailed study at tier 2 or tier 3 level. Results obtained from applying these tier 1 

supporting guidelines must always been seen in the context of the limitations of the tier-1 approach. The 

guidelines are based on the current understanding and information available. They will need revision as the 

understanding of the transport and fate of chemicals from diffuse sources further develops.  

 



 

2. Objective and scope of the guidelines 

 

These guidelines support determining the parameter values necessary for calculating the GWF at tier 1 level. 

The guidelines supplement the global water footprint standard in The Water Footprint Assessment Manual 

(Hoekstra et al, 2011). The guidelines help analysts to choose default values for leaching-runoff fractions, 

maximum allowable concentrations and natural background concentrations, when local data are lacking. This 

tier-1 estimate is sufficient for a first rough estimate, but outcomes have to be interpreted with extreme care, 

within the context of the assumptions taken. 

 

Tier 1 uses leaching-runoff fractions to estimate the amount of chemical substances, applied to a soil, that enter 

the ground- or surface water system. The fraction is to be derived from existing literature or otherwise 

estimated. These guidelines suggest leaching-runoff fractions to be used based on literature and experience of 

the GWF Expert Panel and can be considered as best estimates if no other, better information is available. The 

guidelines show, per type of chemical substance, a range (minimum and maximum) and also an average for the 

leaching-runoff fraction. The guidelines further show which factors are most relevant when assessing the 

leaching-runoff fraction. Without any information about the characteristics of the influencing factors at the spot 

where GWF accounting is done, we advise to apply the average value for the leaching-runoff fraction. Where 

information on the influencing factors is available, a simple table and equation can be used to derive a more 

specific estimate of the leaching-runoff fraction. The more specific estimate will fall somewhere in the range 

between the minimum and maximum value.  

 

Regarding the maximum allowable concentrations in ambient water bodies, The Water Footprint Assessment 

Manual suggests to use local ambient water quality standards. However, for comparative studies, in which GWF 

estimates for different locations are to be compared, it is recommended to take the same standards throughout 

the study. Regarding the maximum allowable concentrations in ambient water bodies, these guidelines suggest 

to select the strictest standard as used in the European Union (EU, 2013), the United States (US-EPA, 2013) or 

Canada (CCME, 2013). These standards are up to date and scientifically most reliable. 

 

For the natural background concentrations, local data are to be used. Should these not be available, these 

guidelines suggest using the natural/background concentrations referenced by Chapman (1996).  

 

These guidelines are structured into the following chapters, based on the procedures and parameters necessary 

for the GWF calculation using tier-1 approach. Chapter 3 summarises how to calculate the grey water footprint 

for the case of point or diffuse pollution based on The Water Footprint Assessment Manual. Chapter 4 assists in 

estimating the leaching-runoff fractions for diffuse pollution. Chapter 5 suggest which maximum allowable 

concentrations for ambient water bodies can be used when local data are lacking and Chapter 6 which natural 

background concentrations.  

 





 

3. How to calculate the grey water footprint  

 

The methodology and calculation of the grey water footprint (GWF) is described in The Water Footprint 

Assessment Manual (Hoekstra et al., 2011). Here, we provide a summary. 

 

When assessing the GWF of an activity or process, the GWF for each contaminant (chemical substance) of 

concern has to be calculated separately. The overall GWF is equal to the largest GWF found when comparing 

the contaminant-specific GWFs. 

 

The GWF is calculated by dividing the pollutant load entering a water body (L, in mass/time) by the critical load 

(Lcrit, in mass/time) times the runoff of the water body (R, in volume/time).  

 

R
L

L

crit

GWF    [volume/time] (1) 

 

The critical load is the load of pollutants that will fully consume the assimilation capacity of the receiving water 

body. It can be calculated by multiplying the runoff of the water body (R, in volume/time) by the difference 

between the ambient water quality standard of the pollutant (the maximum acceptable concentration cmax, in 

mass/volume) and its natural background concentration in the receiving water body (cnat, in mass/volume).  

 

 natmaxcrit ccRL     [mass/time]  (2) 

 

By inserting Equation 2 in 1, we obtain: 

 

natmax cc

L


GWF    [volume/time] (3) 

 

In the case of point sources of water pollution, when chemicals are directly released into a water body in the 

form of a wastewater disposal, the added load (L) can be estimated by measuring the effluent volume and the 

concentration of a pollutant in the effluent. More precisely: the pollutant load can be calculated as the effluent 

volume (Effl, in volume/time) multiplied by the concentration of the pollutant in the effluent (ceffl, in 

mass/volume) minus the water volume of the abstraction (Abstr, in volume/time) multiplied by the actual 

concentration of the intake water (cact, in mass/volume). The load can thus be calculated as follows: 

 

acteffl cAbstrcEfflL     [mass/time] (4) 

 

In the case of diffuse sources of water pollution, estimating the chemical load is not as straightforward as in 

the case of point sources. When a chemical substance is applied on or put into the soil, as in the case of solid 

waste disposal or use of fertilizers or pesticides, it may happen that only a fraction seeps into the groundwater or 
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runs off over the surface to a surface water stream. In this case, the pollutant load is the fraction of the total 

amount of chemical substances applied (put on or into the soil) that reaches ground- or surface water. The 

amount of substance applied can be measured. The fraction of applied chemical substances that reaches ground- 

or surface water, however, cannot be easily measured, since it enters the water in a diffuse way. Therefore it is 

not clear where and when to measure. As a solution, one can measure the water quality at the outlet of a 

catchment, but the load at this point will be the sum of contamination from different sources, so that the 

challenge becomes to apportion the measured concentrations to different sources. Besides, concentrations may 

decrease along the way due to decay processes. Therefore, it is necessary to determine the fraction of applied 

chemical substances that will enter the water system. The simplest method is to assume that a certain fraction of 

the applied chemical substances finally reaches the ground- or surface water: 

 

ApplL     [mass/time] (5) 

 

The dimensionless factor alpha (α) stands for the leaching-runoff fraction, defined as the fraction of applied 

chemical substances reaching freshwater bodies. The variable Appl represents the application of chemical 

substances on or into the soil (in mass/time), i.e. artificial fertilizers, manure or pesticides put on croplands, 

urine deposits on pastures by grazing animals, solid waste or sludge put in landfills, etc. 

 

Another approach to estimate the pollutant load entering a water body, mostly relevant in the case of nutrient 

application in crop cultivation, is by explicitly taking into account the uptake of the chemical substance by 

plants. The leaching-runoff fraction can then be applied to the surplus after plant uptake and harvest. The 

surplus is the difference between the application rate (Appl) of the chemical substance and the offtake rate 

(Offtake): 

 

OfftakeApplSurplus     [mass/time]  (6) 

 

The offtake, the amount of chemical substance taken up by a crop and harvested, can be estimated by 

multiplying the crop yield and the chemical substance content in the crop. 

 

cropin content  substance Chemical YieldOfftake    [mass/time] (7) 

 

The load entering a water body can now be calculated as a leaching-runoff fraction beta (β) times the surplus: 

  

SurplusL      [mass/time]  (8) 

 

How to estimate the leaching-runoff fractions α or β will be explained in the next chapter. 

 

GWF calculations are carried out using ambient water quality standards for the receiving freshwater body, 

i.e. standards with respect to maximum allowable concentrations in the water bodies. The reason is that the 

GWF aims to show the required ambient water volume to assimilate contaminants. Ambient water quality 
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standards are a specific category of water quality standards. Other sorts of standards are, for example, drinking 

water quality standards, irrigation quality standards and emission (or effluent) standards. One should take care 

of using ambient water quality standards. For one particular chemical substance, the ambient water quality 

standard may differ from one to another water body. Besides, the natural concentration may differ from place to 

place. As a result, a certain pollutant load can result in one GWF in one place and another GWF in another 

place. This is reasonable, because the required water volume for assimilating a certain pollutant load will indeed 

be different depending on the difference between the maximum allowable and the natural concentration. 

 

Although ambient water quality standards often exist in national or state legislation or have to be formulated by 

catchment and/or water body in the framework of national legislation or by regional agreement (like in the 

European Water Framework Directive), they do not exist for all chemical substances and for all places. Most 

important is, of course, to specify which water quality standards and natural concentrations have been used in 

preparing a GWF account. 

 

The natural concentration in a receiving water body (cnat) is the concentration in the water body that would 

occur if there were no human disturbances in the catchment. For human-made chemical substances that 

naturally do not occur in water, cnat = 0. When natural concentrations are not known precisely but are estimated 

to be low, for simplicity one may assume cnat = 0. However, when cnat is actually not equal to zero, this results in 

an underestimated GWF, because the assimilation capacity for the chemical substance would be overestimated. 

 

One may ask why the natural concentration is used as a reference and not the actual concentration in the 

receiving water body. The reason is that the GWF is an indicator of appropriated assimilation capacity. The 

assimilation capacity of a receiving water body depends on the difference between the maximum allowable and 

the natural concentration of a substance. If one would compare the maximum allowable concentration with the 

actual concentration of a substance, one would look at the remaining assimilation capacity, which is obviously 

changing all the time, as a function of the actual level of pollution at a certain time. 

 





 

4. How to estimate the leaching-runoff fraction for diffuse pollution sources 

 

4.1. Overview 

 

The movement of a chemical substance applied on soil is mainly controlled by the physical-chemical properties 

of a contaminant, environmental factors and agricultural management practices. Therefore, the potential for 

water contamination by loads from diffuse sources varies from site to site, from chemical substance to substance 

and from management practice to management practice. The amount of chemical substance that will reach a 

water body (either ground- or surface water) will depend on the leaching-runoff fraction of the chemical applied. 

The leaching-runoff fraction is the percentage of a chemical that is lost to groundwater through leaching or to 

surface water through runoff. Figure 1 gives an overview of the different pathways of pollutants to ground- and 

surface water. Overland flows, inter flows and artificial drain flows generally end up in surface water within a 

relatively short time. In most cases, groundwater also reaches surface water (rivers, lakes), but the transport time 

through deeper groundwater is much longer than the transport time through overland flow, inter flow or artificial 

drainage directly to surface water streams.  

 

  

Figure 1. Different flow pathways of contaminants in the case of diffuse pollution. 

 

To calculate the grey water footprint (GWF) of diffuse sources, the actual chemical load reaching a water body 

has to be estimated. Therefore the application rate of the chemical substance is multiplied by the percentage of 

the chemical substance reaching a water body, the leaching-runoff fraction. In Equation 5 (Chapter 3), the 

leaching-runoff fraction is represented by alpha (α).  

 

Leaching and runoff are two different processes, which are influenced in different ways by the same or different 

factors. The value of α is the resultant of many factors and not an inherent property of the chemical substance, 

the soil or the way the chemical substance is applied to the field. When estimating the diffuse load of a chemical 

substance to surface or groundwater at tier 2 or 3, the value of α would be the output of a study of different 

chemical processes and pathways. At tier 1 level, the value of α is estimated based on (mostly qualitative) 

information about environmental factors and agricultural practice. Estimating the flows of chemical substances 

to groundwater and surface water separately is impossible at this level. Therefore, the approach is to estimate the 
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overall leaching-runoff fraction, without making explicit which part refers to the leaching to groundwater and 

which part to the direct runoff to surface water. More advanced methods should be used if a differentiation is to 

be made.  

 

These guidelines suggest default global average leaching-runoff fractions that can be used if no local 

information is available, which may occur for example when companies aim to assess the GWF of their supply 

chain without knowing the precise origin of inputs. With some local information, one can make more site-

specific estimates of leaching-runoff fractions. There are three categories of influencing factors, which should 

be considered to estimate the leaching-runoff fraction at tier 1 level:  

 

 physical-chemical properties of the chemical substance applied (like the soil-water partition coefficient Kd or 

the soil organic carbon-water partition coefficient Koc, and the persistency of the substance); 

 environmental conditions (like soil properties and climatic conditions); and 

 management practices (like the application rate of the chemical substance, the harvest, the presence of 

artificial drainage).  

 

In each category, there are different specific factors that influence the leaching-runoff fraction. The list of 

influencing factors is slightly different per chemical substance group: nutrients, metals, and pesticides, whereby 

nutrients are further distinguished into nitrogen and phosphorus. Sections 4.2 to 4.5 describe the influencing 

factors per type of chemical substance. 

 

The state of a factor determines whether the leaching-runoff potential for a chemical substance will be relatively 

low or high. For nitrogen, for example, soils with little water retention, such as sandy soils, generally have 

higher leaching (Simmelsgaard, 1998). Per factor i, a certain score s between 0 and 1 for the leaching-runoff 

potential will be given, based on the state of the factor. A score of 0 means a very low leaching-runoff potential, 

a score 0.33 a low, a score 0.67 a high, and a score of 1 a very high leaching-runoff potential. If no information 

about the state of a factor can be obtained, it is suggested to use a score of 0.5 for the corresponding factor. 

 

Each separate factor will influence the leaching-runoff of a chemical substance to a greater or lesser extent. 

Therefore, weights are given for each factor. A weight w per factor i denotes the importance of the factor. The 

weights given to the separate influencing factors add up to a total of 100. Tables 3-6 in Sections 4.2 to 4.5 show, 

per type of chemical substance, the weight per influencing factor and what is the score per factor depending on 

the state of the factor. The supporting information and maps in Appendices I-II may help to estimate the state of 

a certain influencing factor if no local data is available.  

 

Once the state of each factor has been determined, the leaching-runoff fraction α can be calculated using the 

following equation: 
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 
min


s
i
w

i
i


w

i
i


















 

max


min    (9) 

 

The value of α will lie somewhere in between the minimum leaching-runoff fraction (αmin) and the maximum 

leaching-runoff fraction (αmax). The minimum and maximum leaching-runoff fractions for the chemical 

substance of concern can be taken from Table 1. Per factor, the score for the leaching runoff potential (si) is 

multiplied by the weight of the factor (wi). When the scores for all influencing factors are lowest (all scores 

equal to zero), the resultant leaching-runoff fraction will be equal to αmin. When the scores for all factors are 

highest (all scores equal to one), the resultant leaching-runoff fraction will be equal to αmax. An example of how 

to obtain an estimate of the leaching-runoff fraction based on Equation 9 is shown in Appendix IV. 

 

Table 1. Minimum, average, and maximum leaching-runoff fractions α for nutrients, metals and pesticides. 

 Nutrients 
Metals Pesticides 

Nitrogen Phosphorus 

Minimum leaching-runoff fraction αmin 0.01 0.0001 0.4 0.0001 

Average leaching-runoff fraction αavg 0.1 0.03 0.7 0.01 

Maximum leaching-runoff fraction αmax 0.25 0.05 0.9 0.1 

 

If the surplus approach is used to calculate the chemical load entering a water body (Equations 6-8), one can 

calculate β in a similar way as α: 

 

  
min


s

i
w

i
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
w

i
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
















 

max
 

min   (10) 

 

Table 2 shows estimates for the minimum and maximum leaching-runoff fractions β for nitrogen and 

phosphorus. For metals and pesticides, plant uptake is less important so that one can take the simpler approach 

based on multiplying the fraction α and the application rate (Equation 5). 

 

Table 2. Minimum, average, and maximum leaching-runoff fractions β for nitrogen and phosphorus. 

 Nitrogen Phosphorus 

Minimum leaching-runoff fraction βmin 0.08 0.0001 

Average leaching-runoff fraction βavg 0.44 0.05 

Maximum leaching-runoff fraction βmax 0.8 0.1 

 

Understanding the influencing factors that determine the leaching and runoff of a chemical substance will help 

to obtain a better estimate of the leaching-runoff fraction. The next sections will show how, per type of chemical 

substance, a rough estimate can be made of the leaching-runoff fraction based on (mostly qualitative) 

information about the local status of different environmental factors and agricultural practice.  
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4.2. Nitrogen 

 

Nitrogen is one of the most important plant nutrients and forms one of the most mobile compounds in the soil-

crop system (National Research Council, 1993). Nitrogen is added to the soil in the form of nitrate (NO3) or 

ammonium (NH4) in artificial fertilizer, as well as in the form of organic nitrogen and ammonia in different 

types of manure. In most soils, ammonium and organic nitrogen transform to nitrate over time. Nitrogen fixation 

and deposition are also important nitrogen inputs into the soil. Nitrogen fixation refers to the conversion of 

atmospheric nitrogen (the gas N2) into ammonium (NH4) by bacteria living symbiotically in the roots of 

leguminous crops. Deposition refers to nitrogen compounds that are emitted from industry, traffic and 

agriculture and return to the soil via dry and wet deposition. Especially nitrogen fixation can be a major input 

depending on the crop grown (leguminous crops fix nitrogen and after harvest the leaching can be substantial) 

and the fertilization level (high level of fertilization generally reduces fixation).  

 

The leaching-runoff of nitrogen to the combined ground-surface water system can be estimated in four different 

ways, listed from least to most preferred, but also from least to most data-demanding: 

 

1. based on the N-application rate (Equation 5) and the global average value for the leaching-runoff fraction α 

(Table 1). 

2. based on the N-surplus in the soil (Equations 6-8) and the global average value for the leaching-runoff 

fraction β (Table 2). 

3. based on the N-application rate (Equation 5), a rough estimate of the leaching-runoff fraction α (Equation 9) 

within the range of αmin and αmax (Table 1) and the estimated nitrogen leaching-runoff potential (Table 3). 

4. based on the N-surplus in the soil (Equations 6-8), a rough estimate of the leaching-runoff fraction β 

(Equation 10) within the range of βmin and βmax (Table 2) and the estimated nitrogen leaching-runoff potential 

(Table 3). 

 

The first two calculation methods are simplest, since no local data on soil and climate conditions or agricultural 

practice are required. However, the outcome will not depend on local factors, while in reality leaching-runoff 

fractions can vary over a wide range, depending on local conditions. The last two calculation methods are better 

because they take into account local factors, even though mostly in a qualitative way. The method based on 

nitrogen surplus is more precise than the method based on the nitrogen application rate. The nitrogen contained 

in harvested crops represents the greatest and most important output of nitrogen from croplands. The amount of 

nitrogen taken up varies depending on the crop and yield. Therefore, it is best to subtract the nitrogen offtake 

due to harvest from the nitrogen application rate before estimating the amount of nitrogen leaching or running 

off. The nitrogen surplus is the difference between the amount of nitrogen applied and the amount of nitrogen 

taken up by the crop and harvested. The nitrogen surplus should be estimated using primarily local data. 

Alternatively, yields can be obtained from national and global statistical databases. N-content in crops can be 

found in agricultural handbooks and databases, such as listed for example in Appendix I under the heading 

‘nutrient surplus’.  
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In the case of nitrogen, leaching and runoff is mainly influenced by: 

 

 environmental factors: N-deposition, soil properties (texture, drainage) and climate (precipitation); and 

 agricultural practice: N-fixation, N-application rate, N-offtake through harvest and management practice. 

 

Table 3 can be used to estimate the leaching-runoff potential in a specific location. The table helps to identify 

the leaching-runoff potential (from very low to very high, with scores from 0 to 1) per influencing factor. The 

table further shows the importance (weight) per influencing factor. When determining the scores for the 

leaching-runoff potential per influencing factor, it is generally better to use local data on these factors. If no 

local data are available, one can choose to derive data from global databases or literature. A few relevant 

references and maps are provided in Appendix II. For those influencing factors for which no information can be 

obtained, it is suggested to use a score of 0.5.  

 

The different factors influence the leaching-runoff fraction as follows: 

 

 N-deposition will considerably influence the amount of nitrogen that will leach or run off. The higher the N-

deposition, the higher the leaching-runoff potential. 

 Regarding soil texture, sandy soils are particularly vulnerable to nitrate leaching because of their low water 

holding capacity, whereas loamy, silty and clayey soils retain water, and with it nitrogen, more effectively, 

thus lowering leaching capacity. Losses through runoff are influenced by soil texture opposite to leaching. 

 The poorer natural drainage of a soil, the less nitrogen will leach to groundwater, but the higher the 

probability of runoff towards surface water. 

 Rainfall is probably the most important climate factor affecting nitrate leaching and runoff. Heavy rain 

causes a peak in leaching and runoff, because water flushes nitrate from soil.  

 The amount of nitrogen lost through leaching or runoff is related to the amount of nitrogen applied. The 

higher the application rate, the larger the fraction of loss.  

 Depending on the crop grown (and the associated nitrogen uptake) and the yield, the amount of nitrogen 

exposed to leaching and runoff will differ. The higher the plant uptake and crop yield, the lower the potential 

of leaching and runoff. 

 Management practices such as timing and mode of nitrogen application can affect chemical and transport 

processes in the soil. Excessive irrigation increases the risk of nitrate leaching (Thompson et al., 2007). Best 

management practice is highly specific to crop and location (National Research Council, 1993). Here we 

categorize management practice from ‘best’ to ‘worst’. ‘Best’ includes a series of measures reducing the risk 

of leaching-runoff. In order to classify the management practice in a particular situation, the questionnaire 

provided in Appendix III can be used as a reference. If no information on management practice is available, 

we suggest using ‘best’ or ‘good’ for industrialized countries, ‘good’ or ‘average’ for emerging countries and 

‘average’ or ‘worst’ for developing countries.  
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Table 3. Factors influencing the leaching-runoff potential of nitrogen. The state of the factor determines the leaching-
runoff potential, expressed as a score between 0 and 1. A weight per factor shows the importance of each factor. 

Category Factor 

Nitrogen 

Leaching-
runoff 

potential 
Very low Low High Very high 

Score (s) 0 0.33 0.67 1 

Weight* (w) 

    α β 

Environ-
mental 
factors 

Atmos-
pheric 
input 

N-deposition (g N 
m-2yr-1) (see 
Appendix II Map 1) 

10 10 < 0.5 > 0.5 < 1.5 > 1.5 

Soil 

Texture (relevant 
for leaching) (see 
Appendix II Map 2) 

15 15 Clay Silt Loam Sand 

Texture (relevant 
for runoff) (see 
Appendix II Map 2) 

10 10 Sand Loam Silt Clay 

Natural drainage 
(relevant for 
leaching) (see 
Appendix II Map 3) 

10 15 
Poorly to very 

poorly 
drained 

Moderately 
to 

imperfectly 
drained 

Well drained 
Excessively 
to extremely 

drained 

Natural drainage 
(relevant for runoff) 
(see Appendix II 
Map 3) 

5 10 
Excessively 
to extremely 

drained 

Well 
drained 

Moderately 
to imperfectly 

drained 

Poorly to 
very poorly 

drained 

Climate 
Precipitation (mm) 
(see Appendix II 
Map 5) 

15 15 0-600 600-1200 1200-1800 > 1800 

Agricul-
tural 
practice  

N-fixation (kg/ha) 10 10 0 > 0 < 60 > 60 

Application rate** 10 0 Very low Low High Very high 

Plant uptake (crop yield)** 5 0 Very high High Low Very low 

Management practice  10 15 Best Good Average Worst 

* When deriving the load of N to ground- and surface water as a fraction of the N application rate, one should use the weights in 
the α-column. When deriving the load of N to ground- and surface water as a fraction of the N surplus in the soil, one should 
take the weights from the β-column. 

** These factors do not need to be considered when deriving the load of N to ground- and surface water as a fraction of the 
nitrogen surplus in the soil, because these factors have then already been accounted for in the surplus calculation. 

 

4.3. Phosphorus 

 

Phosphorus is added to croplands in crop residues, manures and synthetic fertilizers, and from phosphorus-

bearing minerals in the soil. A large part of the phosphorus entering the soil-crop system is removed with the 

harvested crop. The portion of phosphorus not taken up by the crop is immobilized in the soil, incorporated into 

soil organic matter, or lost through surface or subsurface flows to surface water or groundwater. The majority of 

phosphorus is lost from agricultural lands through runoff, both in solution (soluble phosphorus) and bound to 

eroded sediment particles (National Research Council, 1993). 
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Table 4. Factors influencing the leaching-runoff potential of P. The state of the factor determines the leaching-
runoff potential, expressed as a score between 0 and 1. A weight per factor shows the importance of each factor. 

Category Factor 

Phosphorus 

Leaching-
runoff 

potential 
Very low Low High Very high 

Score (s) 0 0.33 0.67 1 

Weight* (w) 

    α β 

Environ- 
mental 
factors 

Soil 

Texture (relevant 
for runoff) (see 
Appendix II Map 2) 

15 25 Sand Loam Silt Clay 

Erosion (see 
Appendix II Map 9) 

20 25 Low Moderate High Very high 

 P-content (g P 
m−2) (see Appendix 
II Map 6) 

15 20 < 200 200-400 400-700 > 700 

Climate Rain intensity 10 15 Light Moderate Strong Heavy 

Agricultural 
practice  

Application rate** 15 0 Very low Low High Very high 

Plant uptake (crop yield)** 10 0 Very high High Low Very low 

Management practice  15 15 Best Good Average Worst 

* When deriving the load of P to ground- and surface water as a fraction of the P application rate, one should use the weights in 
the α-column. When deriving the load of P to ground- and surface water as a fraction of the P surplus in the soil, one should 
take the weights from the β-column. 

** These factors do not need to be considered when deriving the load of P to ground- and surface water as a fraction of the P 
surplus in the soil, because these factors have already been accounted for in the surplus calculation. 

 

Similarly as in the case of nitrogen, the leaching-runoff of phosphorus (P) to the combined ground-surface water 

system can be estimated in four ways, again listed from least to most preferred and least to most data-demanding: 

 

1. based on the P-application rate (Equation 5) and the global average value for the leaching-runoff fraction α 

(Table 1). 

2. based on the P-surplus in the soil (Equations 6-8) and the global average value for the leaching-runoff 

fraction β (Table 2). 

3. based on the P-application rate (Equation 5), a rough estimate of the leaching-runoff fraction α (Equation 9) 

within the range of αmin and αmax (Table 1) and the estimated P leaching-runoff potential (Table 4). 

4. based on the P-surplus in the soil (Equations 6-8), a rough estimate of the leaching-runoff fraction β 

(Equation 10) within the range of βmin and βmax (Table 2) and the estimated P leaching-runoff potential (Table 4). 

 

The method based on P surplus is more precise than the method based on the P application rate because the 

amount of P in the harvest is explicitly taken into account. In this method, the amount of P removed from the 

field by harvesting is subtracted from the P application rate before estimating the amount of P leaching or 

runoff. The P surplus is the difference between the amount of P applied and the amount of P taken up by the 

crop and harvested. The P surplus should be estimated using primarily local data. Otherwise yields can be 

obtained from national and global statistical databases. P-content in crops can be found in agricultural 

handbooks and databases, such as listed for example in Appendix I under the heading ‘nutrient surplus’.  
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The leaching-runoff potential for phosphorus is mainly influenced by: 

 

 environmental factors: soil (texture, erosion, P-content) and climate (rain intensity); 

 agricultural practice: P-application rate, P-offtake through harvest and management practice.  

 

The leaching-runoff potential in a specific location can be estimated with Table 4, which helps to identify the 

leaching-runoff potential (from very low to very high, with scores from 0 to 1) per influencing factor. The table 

further shows the importance (weight) per influencing factor. When determining the leaching-runoff potential 

per factor, it is generally better to use local data. If no local data are available, one can choose to derive data 

from global databases or literature. A few relevant references and maps are provided in Appendix II. For those 

influencing factors for which no information can be obtained, it is suggested to use a score of 0.5.  

 

The different factors influence the leaching-runoff fraction as follows: 

 

 Regarding soil texture, clayey and silty soils generally have low infiltration rates and therefore more surface 

runoff and erosion. These soils are therefore particularly vulnerable to surface runoff of P, whereas loamy 

and sandy soils have higher infiltration, allowing P to be sorbed in the soil column.  

 Soil erosion contributes significantly to the inputs of P into surface water bodies. One can apply the 

Universal Soil Loss Equation (Wischmeier and Smith, 1978) as a simple equation that attempts to predict the 

annual average erosion rate through factors describing the rainfall (erosivity, which depends on rainfall 

energy and intensity), soil (erodibility, which depends on soil texture, structure, organic matter content and 

permeability), slope and slope length, the vegetation and soil conservation practices. The equation allows 

also inclusion of modifying factors for vegetation and agricultural practices.  

 Increased residual P levels in the soil lead to increased phosphorus loadings to surface water, both in 

solution and attached to soil particles (National Research Council, 1993). Therefore, the P content in the soil 

is a critical factor in determining actual loads of P to surface water.  

 The higher rain intensities, the higher the probability that P will be transported through overland flow to 

surface water, either dissolved or with eroded soil.  

 The lower the P-application rate, the lower the risk of leaching or runoff.  

 Depending on the crop grown (and the associated P uptake) and the yield, the amount of P exposed to 

leaching and runoff will differ. The higher the plant uptake and crop yield, the lower the leaching-runoff 

potential.  

 Best management practice includes a series of measures reducing the risk of leaching-runoff. In order to 

classify the management practice in a particular situation, the questionnaire provided in Appendix III can be 

used as a reference. If no information on management practice is available, we suggest using ‘best’ or ‘good’ 

for industrialized countries, ‘good’ or ‘average’ for emerging countries and ‘average’ or ‘worst’ for 

developing countries.  



Grey water footprint accounting: Tier 1 supporting guidelines / 23 

 

4.4. Metals 

 

All soils naturally contain trace levels of metals, which are primarily related to the geology of the region. Metals 

added to soil will normally be retained at the soil surface. An important parameter is the so-called distribution 

coefficient Kd, also called the soil-water partition coefficient. The Kd is expressed in L/kg and defined as the 

ratio of a chemical's sorbed concentration (mg/kg) to the dissolved concentration (mg/L) at equilibrium. Metals 

associated with the aqueous phase of soils are subject to movement with soil water, and may be transported to 

ground water (McLean and Bledsoe, 1992). Most of metal losses, though, are through lateral movement of soil, 

due to mechanical operations or erosion (Camobreco et al., 1996). Metals, unlike organic chemicals, cannot be 

degraded. Therefore, sooner or later, metals applied onto the soil will reach a water body either through 

leaching, runoff or erosion. 

 

Because of the wide range of soil characteristics and various forms by which metals can be added to soil, 

evaluating the extent of metal retention by a soil is site specific (McLean and Bledsoe, 1992). Changes in the 

soil environment over time, such as the degradation of organic waste, changes in pH, redox potential, or soil 

solution composition, due to various remediation schemes or to natural weathering processes may enhance metal 

mobility. Therefore, field specific models for evaluating the behaviour of metals in soils should be used. Here 

we attempt to establish a simplified tier 1 approach to estimate the leaching-runoff potential of applied metals to 

soil, which should only be used if no better method is available.  

 

The leaching-runoff of metals to the combined ground-surface water system can be estimated by multiplying the 

metal-application rate with the leaching-runoff fraction α (Equation 5). If no local data are available, one can 

assume the global average value for the leaching-runoff fraction α (Table 1). More precise, but requiring some 

local data, is to make a rough estimate of the leaching-runoff fraction α (Equation 9) within the range of αmin and 

αmax (Table 1) and the estimated metal leaching-runoff potential (Table 5). 

 

The leaching-runoff potential of metals is mainly influenced by: 

 

 the soil-water partition coefficient Kd (which depends on the chemical properties of the metal, but 

environmental conditions such as pH as well); 

 environmental factors (beside the environmental factors that influence the Kd value): soil properties (texture, 

erosion potential) and climate (rain intensity); 

 site management: artificial drainage. 

 

The leaching-runoff potential in a specific location can be estimated with Table 5, which helps to identify the 

leaching-runoff potential (from very low to very high, with scores from 0 to 1) per influencing factor. The table 

further shows the importance (weight) per influencing factor. When determining the leaching-runoff potential 

per factor, it is generally better to use local data. If no local data are available, one can choose to derive data 

from global databases or literature. A few relevant references and maps are provided in Appendices I-II. For 

those influencing factors for which no information can be obtained, it is suggested to use a score of 0.5.  
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Table 5. Factors influencing the leaching-runoff potential of metals. The state of the factor determines the leaching-
runoff potential, expressed as a score between 0 and 1. A weight per factor shows the importance of each factor. 

Category Factor 

Metals 

Leaching-
runoff 

potential 
Very low Low High Very high 

Score (s) 0 0.33 0.67 1 

Weight 
(w)     

Chemical 
properties 

Kd (L/kg) (see Appendix I, 
contaminant factors)  

30 >1000 1000 – 200 200 – 50 <50 

Environ- 
mental 
factors 

Soil 

Texture (relevant for 
runoff) (see 
Appendix II Map 2) 

15 Sand Loam Silt Clay 

Erosion potential 
(see Appendix II 
Map 9) 

20 Low Moderate High Very high 

Climate Rain intensity 15 Light Moderate Strong  Heavy 

Manage-
ment 
practice 

Site 
manage-
ment 

Artificial drainage 
(relevant for runoff) 
(see Appendix II 
Map 4) 

20 

Poorly to 
very 

poorly 
drained 

Moderately 
to 

imperfectly 
drained 

Well 
drained 

Excessively 
to 

extremely 
drained 

 

 

The different factors influence the leaching-runoff fraction as follows: 

 

 A high Kd value means that more metal is strongly bound to the solid phase and less available to the aqueous 

phase, i.e. for leaching. Factors that reduce Kd and thus enhance the mobility of metals include the properties 

of the metal in question, the quantity and type of soil binding sites (organic matter), the acidity (pH), the 

concentration of complexing anions (organic and inorganic), and competing cations in soil solution 

(Camobreco et al., 1996; US-EPA, 1996a). Soil organic matter plays a key role in complexing and retaining 

metals; the higher the organic matter content, the lower the leaching-runoff fraction, because metals are 

more strongly adsorbed (McLean and Bledsoe, 1992). As the organic matter in soil decomposes, however, it 

could release soluble metal-organic complexes (Camobreco et al., 1996). The solubility of heavy metals such 

as copper, lead, zinc, cadmium, and nickel, typically increase as the pH decreases (National Research 

Council, 1993). Metal-soil interaction is such that when metals are added at the soil surface, downward 

transportation does not occur to any great extent unless the metal retention capacity of the soil is overloaded 

(McLean and Bledsoe, 1992). This means that the higher the concentration of metal in the soil, the higher the 

leaching-runoff potential. 

 Regarding soil texture, sandy soils are particularly vulnerable to metal leaching, whereas loamy, silty and 

clayey soils retain metals more effectively, but are therefore vulnerable to surface runoff and erosion.  

 Soil erosion may contribute significantly to the metal inputs into surface water bodies. The Universal Soil 

Loss Equation (Wischmeier and Smith, 1978) can be used as a simple equation that attempts to predict the 

annual average erosion rate.  
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 The higher rainfall intensities, the higher the probability that metals will be washed out or that the soil 

erodes, taking along the metals contained in the soil. 

 Artificial drainage increases the probability that metals end up in surface water. Soils that are poorly drained 

will accumulate the metals; in this case, metals can, in the long term, reach groundwater through leaching or 

surface water through erosion.  

 

 

4.5. Pesticides 

 

Leaching and runoff of pesticides is strongly influenced by their specific chemical properties. The term 

pesticides includes different chemical mixtures with different purposes (insecticides, herbicides, fungicides, 

etc.). They usually include one or more ‘active ingredients’ (specific chemical substances), with different 

properties and behaviours. Estimating the leaching and runoff potential for all of these compounds is 

challenging. In addition, technical difficulties and the high costs associated with measuring the fraction of 

pesticides present in the various compartments over time make a full understanding of the fate and transport of 

pesticides more difficult (National Research Council, 1993). 

 

The leaching-runoff of pesticides to the combined ground-surface water system can be estimated by multiplying 

the pesticide-application rate with the leaching-runoff fraction α (Equation 5). If no local data are available, one 

can assume the global average value for the leaching-runoff fraction α (Table 1). More precise, but requiring 

some local data, is to make a rough estimate of the leaching-runoff fraction α (Equation 9) within the range of 

αmin and αmax (Table 1) and the estimated metal leaching-runoff potential (Table 6). 

 

The leaching-runoff potential of pesticides is mainly influenced by: 

 

 pesticide properties: the soil organic carbon-water partitioning coefficient (Koc) and persistence (half-life); 

 environmental factors: soil properties (soil texture, organic matter content) and climate (rain intensity, 

precipitation); 

 agricultural practice. 

 

The leaching-runoff potential of pesticides in a specific location can be estimated with Table 6, which helps to 

identify the leaching-runoff potential (from very low to very high, with scores from 0 to 1) per influencing 

factor. The table further shows the importance (weight) per influencing factor. When determining the leaching-

runoff potential per factor, it is generally better to use local data. If no local data are available, one can choose to 

derive data from global databases or literature. A few relevant references and maps are provided in Appendices 

I-II. For those influencing factors for which no information can be obtained, it is suggested to use a score of 0.5. 
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Table 6. Factors influencing the leaching-runoff potential of pesticides. The state of the factor determines the leaching-
runoff potential, expressed as a score between 0 and 1. A weight per factor shows the importance of each factor. 

Category Factor 

Pesticides 

Leaching-
runoff 

potential 
Very low Low High Very high 

Score (s) 0 0.33 0.67 1 

Weight 
(w)     

Chemical 
properties 

Koc (L/kg) (see Appendix I, 
contaminant factors) 

20 >1000 1000 - 200 200 - 50 <50 

Persistence (half-life in days) 
(relevant for leaching) (see 
Appendix I, contaminant factors)

15 <10 10 - 30 30 - 100 >100 

Persistence (half-life in days) 
(relevant for runoff) (see 
Appendix I, contaminant factors)

10 <10 10 - 30 30 - 100 >100 

Environmental 
factors 

Soil 

Texture (relevant for 
leaching) (see 
Appendix II Map 2) 

15 Clay Silt Loam Sand 

Texture (relevant for 
runoff) (see Appendix 
II Map 2) 

10 Sand Loam Silt Clay 

Organic matter 
content (kg/m2) (see 
Appendix II Map 8) 

10 >80 41 - 80 21 - 40 <20 

Climate 

Rain intensity 
(relevant for runoff) 

5 Light Moderate Strong Heavy 

Precipitation (mm) 
(relevant for leaching) 
(see Appendix II Map 
5) 

5 0-600 600-1200 
1200-
1800 

> 1800 

Agricultural 
practice 

Management practice (relevant 
for runoff) 

10 Best Good Average Worst 

 

The different factors influence the leaching-runoff fraction as follows: 

 

 The soil organic carbon-water partitioning coefficient (Koc) is the ratio of the mass of a chemical that is 

adsorbed in the soil per unit mass of organic carbon in the soil to the equilibrium concentration of the 

chemical in solution. It is the soil-water partition coefficient (Kd) normalized to total organic carbon content. 

Koc values are useful in predicting the mobility of organic soil contaminants: the lower the Koc value, the 

lower the adsorption affinity of a chemical, the higher the leaching-runoff potential.  

 The persistence of an active ingredient of a pesticide is commonly evaluated in terms of half-life, which is 

the time that it takes for 50 per cent of a chemical substance to be degraded or transformed. Pesticides with a 

long half-life are more persistent and therefore have a higher leaching-runoff potential (National Research 

Council, 1993). 

 The soil texture is an important factor, because the texture determines the movement of water, which in turn 

determines the movement of the pesticides dissolved in water. While leaching generally increases from 

clayey to sandy soils, runoff decreases.  
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 The organic matter content in the soil will influence the biodegradability of the active ingredients of a 

pesticide. The organic matter content is an important variable affecting sorption of the active ingredients 

onto soil particles. Adsorption retains chemical substances in the soil, thus allowing more time for 

degradation by chemical and biological processes. Organic matter provides binding sites and is very reactive 

chemically. Soil organic matter also influences how much water the soil can hold before movement occurs. 

Increasing organic matter will increase the water-holding capacity of the soil (USDA, 1997). 

 The more intense the rainfall, the higher the probability that pesticides will be washed out or that the soil 

erodes.  

 At large rainfall rates, it is likely that more pesticides will reach the groundwater through leaching. 

Additionally, there is a greater potential that a rainfall event will closely follow application, which can be an 

important factor in pesticide runoff. 

 Management practices such as the mode of pesticide application affect the amount reaching freshwater 

bodies. Spraying, for instance, may lead to drift away from the field, and spraying to close by streams will 

increase the risk of pesticides depositing directly onto the water. Best management practice includes a series 

of measures reducing the risk of leaching-runoff. In order to classify the management practice in a particular 

situation, the questionnaire provided in Appendix III can be used as a reference. If no information on 

management practice is available, we suggest using ‘best’ or ‘good’ for industrialized countries, ‘good’ or 

‘average’ for emerging countries and ‘average’ or ‘worst’ for developing countries.  

 





 

5. Which maximum allowable concentration to use 

 

5.1. Introduction 

 

Grey water footprint (GWF) calculations are carried out using ambient water quality standards for the receiving 

freshwater body (in other words, standards with respect to maximum allowable concentrations). The reason is 

that the GWF aims to show the required ambient water volume to assimilate chemical substances. For a 

particular chemical substance, the ambient water quality standard may vary from one to another water body. 

Besides, the natural concentration may vary from place to place. As a result, a certain pollutant load can result in 

one GWF in one place and another GWF in another place. This is reasonable, because the required water 

volume for assimilating a certain pollutant load will indeed be different depending on the difference between the 

maximum allowable and the natural concentration (Hoekstra et al., 2011). 

 

Although ambient water quality standards often exist in national or state legislation or have to be formulated by 

catchment and/or water body in the framework of national legislation or by regional agreement (like in the 

European Water Framework Directive), they do not exist for all chemical substances and all places (Hoekstra et 

al., 2011). This is why, if no local information can be obtained, this guideline proposes to use the maximum 

allowable concentrations as based on the assessment of long term/chronic environmental effects from one of 

these sources: 

 

 EU (2013) – European priority substances in the field of water policy. 

 US-EPA (2013) – US National Recommended Water Quality Criteria - Aquatic Life Criteria.  

 CCME (2013) - Canadian Water Quality Guidelines for the Protection of Aquatic Life.  

 

These sources are recommended because the water quality standards included in these references are among the 

most advanced and they include relatively large sets of parameters1. They have large application areas as well 

and are referenced by many countries that establish country-specific standards.  

 

In the following sections, maximum allowable concentrations are suggested for the GWF calculation for the 

case in which no local standards are available. Separate tables are included for four groups of parameters: 

nutrients, metals & inorganics, pesticides & organics and ‘other water quality parameters’. Per chemical 

substance, it is recommended to select the strictest standard from the above three sources. For cross-country 

studies, it is recommended to use a consistent set of standards, so that differences in national legislations will 

not affect the GWF calculations. In any case, it is recommended to explicitly mention the standards used. 

 

                                                           
1 EC (2008) includes about 35 parameters, US-EPA (2013) 60 parameters and CCME (2013) 125 parameters. 
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5.2. Nitrogen and phosphorous 

 

The values in Table 7 can be used as maximum allowable concentrations for different forms of N and P. Make 

sure when calculating the GWF that the chemical substance state (e.g. unionized ammonia-N or total ammonia-

N) is the same in the effluent concentration, maximum concentration and natural background concentration. The 

guideline value for total ammonia is temperature and pH dependent (see Table 8). For phosphorus, the 

maximum allowable value depends on the natural trophic state of the water body. If no local trophic state values 

are available, the trigger ranges as given by CCME (2004) can be used. A trigger range is a desired 

concentration range for phosphorus; if the upper limit of the range is exceeded, it indicates a potential 

environmental problem, and therefore ‘triggers’ further investigation. Natural physical and chemical water 

quality variables (e.g., salinity, pH, nutrients) inherently vary within and between ecosystem types, and so the 

preferred method for determining the trigger ranges is to use similar, high quality reference sites to determine 

natural levels. These ranges are then categorized according to the trophic status of the reference site (Table 9). 

This approach provides a trigger range that is relevant to the ecosystem type and locality. In the case that the 

trophic status of a water body cannot be determined, these guidelines suggest to use the value of 20 µg/L for 

mesotrophic water bodies to calculate the GWF. For further information, see CCME (2004). 

 

Table 7. Maximum allowable concentration: nutrients. 

Nutrients CAS number2 Maximum allowable concentration (µg/l) Referenced 
guideline (EU3, 
CCME4, US-EPA5) 

Ammonia (NH3) 7664-41-7 
(unionized) 

19 unionized NH3-N* 

see Table 8 for total NH3  

CCME 

Nitrate (NO3)
6 14797-55-8 13000 NO3 CCME 

Nitrite (NO2) 14797-65-0 60 NO2-N CCME 

Phosphorus (total)  Ultra-oligotrophic                 4 

Oligotrophic               10 

Mesotrophic               20 

Meso-eutrophic               35 

Eutrophic             100 

CCME 

* The unionized ammonia guideline value is expressed as μg ammonia/L. This is equivalent to 16 μg ammonia-N/L (= 

19×14.0067 / 17.35052, rounded to two significant figures)7.  

                                                           
2 CAS registry is the most authoritative collection of disclosed chemical substance information. Each CAS Registry Number 
(often referred to as CAS number) is a unique numeric identifier, designated to only one substance. It has no chemical 
significance and is a link to information about a specific chemical substance (www.cas.org). 
3 EU (2013): a long-term standard, expressed as an annual average concentration (AA-EQS) and normally based on chronic 
toxicity data. 
4 CCME (2013): long-term exposure guidelines are meant to protect against all negative effects during indefinite exposures. 
They are determined generally based on chronic toxicity data. 
5 US-EPA (2013): The Criterion Continuous Concentration (CCC) is an estimate of the highest concentration of a material in 
surface water to which an aquatic community can be exposed indefinitely without resulting in an unacceptable effect. US-
EPA derives chronic criteria from long term (often greater than 28-day) tests that measure survival, growth, or reproduction. 
6 Conversion factors for various nitrate units to mg NO3/L, as well as additional information can be found in CCME (2012). 
7 See CCME (2010) for more details. 
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Table 8. Water quality guidelines for total ammonia for the protection of aquatic life (mg NH3/L). Source: CCME (2010). 

Temperature (oC) 
 pH 

 6.0 6.5 7.0 7.5 8.0 8.5 9.0 10.0 

0  231 73.0 23.1 7.32 2.33 0.749 0.25 0.042 

5  153 48.3 15.3 4.84 1.54 0.502 0.172 0.034 

10  102 32.4 10.3 3.26 1.04 0.343 0.121 0.029 

15  69.7 22.0 6.98 2.22 0.715 0.239 0.089 0.026 

20  48.0 15.2 4.82 1.54 0.499 0.171 0.067 0.024 

25  33.5 10.6 3.37 1.08 0.354 0.125 0.053 0.022 

30  23.7 7.50 2.39 0.767 0.256 0.094 0.043 0.021 

Measurements of total ammonia in the aquatic environment are often expressed as mg/L total ammonia-N. The present 
guideline values (in mg/L NH3) can be converted to mg/L total ammonia-N by multiplying the guideline values by 0.8224. 
 

Table 9. Total phosphorus trigger ranges. Source: CCME (2004). 

Trophic status Canadian trigger ranges total phosphorus (μg/L) 

Ultra-oligotrophic < 4 

Oligotrophic 4-10 

Mesotrophic 10-20 

Meso-eutrophic 20-35 

Eutrophic 35-100 

Hyper-eutrophic > 100 

 

 

5.3. Metals & inorganics, pesticides & organics, and additional water quality parameters 

 

Tables 10-11 show suggested maximum allowable concentrations for metals/inorganics and pesticides/organics, 

respectively, for those cases where no local standards are available or for comparative studies. There are some 

water quality parameters, which are neither listed in the EU standard as priority substances, nor in the CCME 

and US-EPA guidelines, but are often used by industry to assess their water quality limits. Therefore, if no local 

standards are available, these guidelines suggest using the values from EEC (1975) concerning the quality 

required of surface water intended for the abstraction of drinking water (Table 12).  
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Table 10. Maximum allowable concentrations for metals and inorganics. 

Metals & inorganics  CAS number Maximum allowable 
concentration (µg/l) 

Referenced guideline 
(EU8, CCME9, EPA10) 

Aluminum 7429-90-5 5 if pH < 6.5  
100 if pH ≥ 6.5 

CCME 

Arsenic 7440-38-2 5 CCME 

Boron 7440-42-8 1500 CCME 

Cadmium and its compounds 7440-43-9 ≤0.08 (represents class I-
high quality waters) 

EU 

Chloride 16887-00-6 120000 CCME 

Chlorine 7782-50-5 11 EPA 

Chromium (III) 7440-47-3 8.9 CCME 

Chromium (VI) 7440-47-3 1 CCME 

Copper 

7440-50-8 

Copper concentration = 
e0.8545[ln(hardness)]-1.465 * 0.2 
(if hardness is not known 
the value is 2) 

CCME 

Cyanide 57-12-5 5 (as free CN) CCME 

Fluoride 16984-48-8 120 CCME 

Iron 7439-89-6 300 CCME 

Lead and its compounds 7439-92-1 2.5 EPA 

Mercury and its compounds 7439-97-6 0.026 CCME 

Molybdenum 7439-98-7 73 CCME 

Nickel and its compounds 7440-02-0 4 EU 

Reactive chlorine species (total residual 
chlorine, combined residual chlorine, total 
available chlorine, hypochlorous acid, 
chloramine, combined available chlorine, 
free residual chlorine, free available 
chlorine, chlorine produced oxidants 

 0.5 CCME 

Selenium 7782-49-2 1 CCME 

Silver 7440-22-4 0.1 CCME 

Thallium 7440-28-0 0.8 CCME 

Uranium 7440-61-1 15 CCME 

Zinc 7440-66-6 30 CCME 

 

                                                           
8 EU (2013): a long-term standard, expressed as an annual average concentration (AA-EQS) and normally based on chronic 

toxicity data. 
9 CCME (2013): long-term exposure guidelines are meant to protect against all negative effects during indefinite exposures. 

They are determined generally based on chronic toxicity data. 
10 US-EPA (2013): The Criterion Continuous Concentration (CCC) is an estimate of the highest concentration of a material 

in surface water to which an aquatic community can be exposed indefinitely without resulting in an unacceptable effect. US-

EPA derives chronic criteria from long term (often greater than 28-day) tests that measure survival, growth, or reproduction. 
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Table 11. Maximum allowable concentrations for pesticides and organics. 

Pesticides & organics  CAS number Maximum allowable 
concentration (µg/l) 

Referenced guideline 
(EU11, CCME12, US-EPA13) 

1,2 Dichloroethane 107-06-2 10 EU 

1,2,3,4 Tetrachlorobenzene 634-66-2 1.8 CCME 

1,2,3-Trichlorobenzene 87-61-6 8 CCME 

1,2,4- Trichlorobenzene 

 

120-82-1 24 CCME 

1,2-Dichlorobenzene 95-50-1 0.7 CCME 

1,3-Dichlorobenzene 541-73-1 150 CCME 

1,4-Dichlorobenzene 106-46-7 26 CCME 

3-lodo-2-prpynyl butylcarbamate 55406-53-6 1.9 CCME 

Acenaphthene  83-32-9 5.8 CCME 

Acridine 260-94-6 4.4 CCME 

Acrolein 107-02-8 3 EPA 

Alachlor 15972-60-8 0.3 EU 

Aldicarb 116-06-3 1 CCME 

Aniline 62-53-3 2.2 CCME 

Anthracene 120-12-7 0.012 CCME 

Atrazine 1912-24-9 0.6 EU 

Benzene 71-43-2 10 EU 

Benzo(a)anthracene 56-55-3 0.018 CCME 

Benzo(a)pyrene  50-32-8 0.015 CCME 

Bromacil 314-40-9 5 CCME 

Bromoxynil 1689-84-5 5 CCME 

C10-13 Chloroalkanes 85535-84-8 0.4 EU 

Captan 133-06-2 1.3 CCME 

Carbaryl 63-25-2 0.2 CCME 

Carbofuran 1563-66-2 1.8 CCME 

Carbon-tetrachloride 56-23-5 12 EU 

                                                           
11 EU (2013): a long-term standard, expressed as an annual average concentration (AA-EQS) and normally based on chronic 

toxicity data. 
12 CCME (2013): long-term exposure guidelines are meant to protect against all negative effects during indefinite exposures. 

They are determined generally based on chronic toxicity data. 
13 US-EPA (2013): The Criterion Continuous Concentration (CCC) is an estimate of the highest concentration of a material 

in surface water to which an aquatic community can be exposed indefinitely without resulting in an unacceptable effect. US-

EPA derives chronic criteria from longer term (often greater than 28-day) tests that measure survival, growth, or 

reproduction. 
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Pesticides & organics  CAS number Maximum allowable 
concentration (µg/l) 

Referenced guideline 
(EU11, CCME12, US-EPA13) 

Chlordane  57-74-9 0.0043 EPA 

Chlorfenvinphos 470-90-6 0.1 EU 

Chlorothalonil 1897-45-6 0.18 CCME 

Chlorpyrifos (Chlorpyrifos-ethyl) 2921-88-2 0.002 CCME 

Cyanazine 21725-46-2 2 CCME 

Cyclodiene pesticides 

Aldrin 

Dieldrin 

Endrin 

Isodrin 

 

309-00-2 

60-57-1 

72-20-8 

465-73-6 

∑=0.01 EU 

DDT total 

Para-para-DDT 

 

50-29-3 

0.025 

0.001 

EU 

EPA 

Deltamethrine 52918-63-5 0.0004 CCME 

Demeton 8065-48-3 0.1 EPA 

Di(2-ethylhexyl)-phythalate (DEHP) 117-81-7 1.3 EU 

Di(n-butyl)-phythalate 84-74-2 19 CCME 

Diazinon  333-41-5 0.17  EPA 

Dicamba 1918-00-9 10 CCME 

Dichloromethane 75-09-2 20 EU 

Dichlorophenols  0.2 CCME 

Diclofop-methyl 51338-27-3 6.1 CCME 

Didecyldimethylammoniumchloride 7173-51-5 1.5 CCME 

Diisopropanolamine 110-97-4 1600 CCME 

Dimethoate 60-51-5 6.2 CCME 

Dinoseb 88-85-7 0.05 CCME 

Diuron 330-54-1 0.2 EU 

Endosulfan 115-29-7 0.003 CCME 

Ethylbenzene 100-41-4 90 CCME 

Ethylene glycol 107-21-1 192000 CCME 

Fluoranthene 206-44-0 0.04 CCME 

Fluorene 86-73-7 3 CCME 

Glyphosate 1071-83-6 800 CCME 

Guthion 86-50-0 0.01 EPA 

Heptachlor 76-44-8 0.0038 EPA 

Heptachlor-epoxide 1024-57-3 0.0038 EPA 
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Pesticides & organics  CAS number Maximum allowable 
concentration (µg/l) 

Referenced guideline 
(EU11, CCME12, US-EPA13) 

Hexachloro-cyclohexane 

Lindane 

608-73-1 0.01 CCME 

Imidacloprid 138261-41-3 0.23 CCME 

Isopuroturon 34123-59-6 0.3 EU 

Linuron 330-55-2 7 CCME 

Malathion 121-75-5 0.1 EPA 

Methoprene 40596-69-8 0.09 (target 
organism 
management value: 
0.53) 

CCME 

Methoxsychlor 72-43-5 0.03 EPA 

Methyl teratiary butyl ether 1634-04-4 10000 CCME 

Methylchlorophenoxyaceticacid 94-74-6 2.6 CCME 

Methylmercury 22967-92-6 0.004 CCME 

Metolachlor 51218-45-2 7.8 CCME 

Metribuzin 21087-64-9 1 CCME 

Mirex 2385-85-5 0.001 EPA 

Monochlorobenzene 108-90-7 1.3 CCME 

Monochlorophenols  7 CCME 

Naphthalene 91-20-3 1.1 CCME 

Nonylphenol (4-Nonylphenol) 84852-15-3 0.3 EU 

Octylphenol 140-66-9 0.1 EU 

Parathion 56-38-2 0.013 EPA 

Penta-chloro-benzene 608-93-5 0.007 EU 

Pentachloro-phenol 87-86-5 0.4 EU 

Permethrin 52645-53-1 0.004 CCME 

Phenanthrene 85-01-8 0.4 CCME 

Phenols (mono- & dihydric) 108-95-2 4 CCME 

Phenoxy herbicides  4 CCME 

Picloram 1918-02-1 29 CCME 

Polychlorinated Biphenyls (PCBs)  0.014 EPA 

Propylene glycol 57-55-6 500000 CCME 

Pyrene  0.025 CCME 

Quinoline 91-22-5 3.4 CCME 

Simazine 122-34-9 1 EU 

Styrene 100-42-5 72 CCME 
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Pesticides & organics  CAS number Maximum allowable 
concentration (µg/l) 

Referenced guideline 
(EU11, CCME12, US-EPA13) 

Sulfolane 126-33-0 50000 CCME 

Tebuthiuron 34014-18-1 1.6 CCME 

Tetrachloro-ethylene 127-18-4 10 EU 

Tetrachloromethane 56-23-5 13.3 CCME 

Tetrachlorophenols  1 CCME 

Toluene 108-88-3 2 CCME 

Toxaphene 8001-35-2 0.0002 EPA 

Triallate 2303-17-5 0.24 CCME 

Tributyltin compounds (Tributyltin-
cation) 

36643-28-4 0.0002 EU 

Trichloro-benzenes 12002-48-1 0.4 EU 

Trichloro-ethylene 79-01-6 10 EU 

Trichloro-methane 67-66-3 1.8 CCME 

Trichlorophenols  18 CCME 

Trifluralin 1582-09-8 0.03 EU 

Triphenyltin 892-20-6 0.022 CCME 

 

 

Table 12. Maximum allowable values for additional water quality parameters. Source: EEC (1975). 

Water quality parameter Maximum allowable value 

Total suspended solids (mg/l) 25 

Chemical oxygen demand (COD) (mg/l O2) 30 

Dissolved oxygen saturation rate (% O2) 70 

Biochemical oxygen demand (BOD 5) (mg/l O2) 3 

Temperature (°C) 22 

 



 

6. What natural background concentration to use 

 

The general definition of natural background level is the concentration that is present owing to natural and 

geological processes only, i.e. the background level with no anthropogenic contribution (‘preindustrial’ levels) 

(EC, 2011). Natural background concentrations within an environmental compartment may vary by several 

orders of magnitude between geologically disparate areas, and are determined by various factors, like site-

specific bedrock composition and the effects of climate on the degree of weathering. Due to natural dynamic 

processes like weathering, the addition of organic material (leaves) in autumn and uptake by plants during 

spring and summer, natural background concentrations may show annual cycles (Quevauviller et al., 2008). This 

variation of water quality over time and space makes it impossible to establish a ‘global’ natural background 

level for individual chemical substances, which also would not be very meaningful because of the great 

variation (EC, 2011). Therefore we strongly recommend using local data on natural background concentrations.  

 

In more or less pristine rivers, one can assume that natural concentrations are equal to the actual concentrations 

and thus rely on long-term daily or monthly averages as measured in a nearby measuring station. For disturbed 

rivers, one will have to rely on historical records or model studies (Hoekstra et al., 2011). 

 

EC (2011), a technical guidance document for deriving environmental quality standards, mentions that the 

preferred procedure for determining the ‘natural’ background concentrations in freshwater, will usually be to 

determine the concentrations in springs or in water bodies in ‘pristine’ areas in the given region, e.g. headwaters. 

Another possibility is to measure concentrations in deep groundwater. In some cases, however, the 

concentration may be higher in the groundwater than in the surface water, for instance because of the 

groundwater’s contact with deep lying mineral rocks or soils and subsequent dilution by rain. Yet another 

possibility is to use models to simulate soil processes and erosion, in combination with geochemical database 

(like for instance GTK, 2013). 

 

The Canadian water quality guidelines have used the background concentration approach to establish their 

objectives (CCME, 2003). The natural background concentrations of a contaminant are estimated and used to 

define acceptable water quality conditions at a site under consideration. Three general approaches have been 

used to define background concentrations of water quality variables, which involve: 

 

 Utilization of historically-collected water quality data for the site (i.e., prior to the commencement of 

activities that could have substantially altered water quality conditions); 

 Monitoring contemporary water quality conditions at one or more stations located upstream of contaminant 

sources; and 

 Monitoring contemporary water quality conditions at one or more reference areas, which are generally 

located nearby the site under consideration but have not been adversely affected by human activities. 

 

If local data are not available and time and budget do not allow determining the natural background 

concentrations, we suggest using the values in the following tables, which were derived from the 
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natural/background concentrations referenced by Chapman (1996). Tables 13 and 14 show the values that can 

be used for nutrients and metals/inorganics, respectively. Natural background concentrations for anthropogenic 

organic substances and pesticides are zero. More information on how one can obtain country-specific 

background levels is given in Appendix I. 

 

Table 13. Natural/background concentrations: nutrients 

Nutrients Natural / background concentrations (mg/L) 

Ammonium N-NH4 0.015 

Nitrate N-NO3 0.1 

N organic 0.26 

Phosphate P-PO4 0.01 

 

Table 14. Natural/background concentrations: metals & inorganics 

Metals & inorganics  Natural / background 
concentrations 

Unit 

Aluminum-Al 40 µg/L 

Arsenic-As 1 µg/L 

Boron-B 30 µg/L 

Cadmium-Cd 0.001 µg/L 

Chromium-Cr 0.1 µg/L 

Cobalt-Co 0.1 µg/L 

Copper-Cu 1.4 µg/L 

Fluoride-F 100 µg/L 

Iron-Fe 50 µg/L 

Manganese-Mn 10 µg/L 

Molybdenum-Mo 0.8 µg/L 

Nickel-Ni 0.4 µg/L 

Lead-Pb 0.04 µg/L 

Strontium-Sr 100 µg/L 

Zinc-Zn 0.2 µg/L 

Calcium-Ca 8 mg/L 

Magnesium-Mg 2.4 mg/L 

Sodium-Na 3.7 mg/L 

Potassium-K 1 mg/L 

Chloride-Cl 3.9 mg/L 

Sulphate-SO4 4.8 mg/L 

Bicarbonate-HCO3 30.5 mg/L 

Total suspended solids-TSS 150 mg/L 
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Appendix I. Supporting information 

 

General information 

 

1. National Research Council (1993). 

2. Thompson et al. (2007). 

3. Garrabrants et al. (2010). 

 

Contaminant factors 

 

1.  Pesticides:  

a.   AERU (2013).  

b.   US-EPA (1996b). 

c.   Wauchope et al. (1992). 

2.  Metals:  

a.   US-EPA (1996b). 

Estimated Kd values depending on pH (see Appendix II Map 7 if local pH values cannot be obtained): 

 

b.   US-EPA (1999). 

c.   McLean and Bledsoe (1992). 

d.   Allison and Allison (2005). 

 

Soil information 

 

1. USDA (2013a). 

2. FAO (2013a). 

3. SAGE (2013). 

4. Koirala (2013). 
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5. JRC (2013).  

6. IIASA (2013). 

7. MacDonald et al. (2011). 

8. Batjes (2011). 

9. Cleveland et al. (2013). 

10. Yang et al. (2013). 

11. Scharlemann et al. (2011). 

 

Nutrient surplus 

 

1. FAO (2013b). 

2. Roy et al. (2006).  

3. USDA (2013b) 

4. EEA (2005).  

 

Maximum allowable concentrations 

 

1. Australia and New Zealand: ANZECC and ARMCANZ (2000). 

2. Austria: Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management (2010). 

3. Brazil: CONAMA (2005). 

4. Canada: CCME (2013). 

5. China: MEP (1994, 2002).  

6. European Union: EC (2008).  

7. Germany LAWA-AO (2007). 

8. Japan: Ministry of the Environment (2010).  

9. South Africa: DWAF (1996). 

10. United Kingdom: UKTAG (2008, 2013). 

11. United States: US-EPA (2012, 2013). 

 

Natural background concentrations 

 

1. As a reference, a global database on actual (not natural) concentrations is available through UNEP (2009). 

2. Using the geochemical atlas of GTK (2013), natural background concentrations can be derived, using the 

guidelines of EC (2011).  

3. For several parts of the world, for specific substances, good studies are available, for example: United States: 

Hem (1985); Austria: Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management 

(2010); Germany: LAWA-AO (2007); The Netherlands: Osté et al. (2011). 

 



 

Appendix II. Leaching-runoff influencing factor maps 

 

Map 1. Global N deposition. Source: Cleveland et al. (2013). 

Map 2. Global average soil texture. Source: Koirala (2013).  

Map 3. Soil drainage class. Source: FAO (2013a). 

Map 4. Global map of artificially drained agricultural areas. Source: Feick et al. (2005). 

Map 5. Global average annual precipitation. Source: FAO (2013a). 

Map 6. Global distribution of total phosphorous content (g P/m2) in soil. Source: Yang et al. (2013). 

Map 7. pH topsoil. Source: FAO (2013a). 

Map 8. Organic carbon. Source: Scharlemann et al. (2011). 

Map 9. Water erosion vulnerability. Source: USDA (2013a). 

 

 

 

 



 

 

Map 1. Global N deposition. Source: Cleveland et al. (2013).  
 

 
 

 

 

 

 

 



 

 

Map 2. Global average soil texture. Source: Koirala (2013).  

 
 

 

 

 



 

 

Map 3. Soil drainage class. Source: FAO (2013a).  

 



 

 

Map 4. Global map of artificially drained agricultural areas. Source: Feick et al. (2005). 

  



 

Map 5. Global average annual precipitation. Source: FAO (2013a).  

 



 

 

Map 6. Global distribution of total phosphorous content (g P/m2) in soil. Source: Yang et al. (2013). 

 

 

 

 

 

 



 

Map 7. pH topsoil. Source: FAO (2013a). 

 



 

 

Map 8. Organic carbon. Source: Scharlemann et al. (2011). 

 

 



 

Map 9. Water erosion vulnerability. Source: USDA (2013a). 

 



 

 

Appendix III. Agricultural management practice questionnaire 

 

Best management practice includes a series of measures reducing the risk of leaching-runoff of nutrients or 

pesticides. Table 15 lists some of these measures. By checking whether the various measures listed in this table 

are used or not, one will be able to obtain a very rough classification of the management practice. If all of the 

nine listed measures are applied, one can classify the management practice as ‘best’. If 7 or 8 of the listed 

measures are applied, the management practice is classified as ‘good’; with 5 or 6 measures as ‘average’; and 

with less than 5 measures as ‘worst’. In the case in which it is not known whether a certain measure is applied, 

we recommend taking the precautionary approach and answer with ‘no’. If no information on management 

practice is available at all, we suggest assuming ‘best’ or ‘good’ management practice for industrialized 

countries, ‘good’ or ‘average’ for emerging countries and ‘average’ or ‘worst’ for developing countries. 

 

Table 15. Agricultural management practice questionnaire 

Measure Applied? 

Controlled application of chemicals. Explanation: through aerial application, 
considerable losses may occur through spray drift and volatilization; with soil-
incorporated application methods, losses are much lower (National Research Council, 
1993). 

Yes No 

Diffuse pollution mitigation measures. Explanation: buffer zones, stream fencing, and 
cattle management can reduce the fraction of the contaminant entering a water body 
(USDA, 1997). 

Yes No 

Careful handling of chemicals, e.g. during storage, transport or disposal. Yes No 

Application immediately before heavy rainfall or irrigation is avoided. Explanation: during 
heavy rainfall and in case of excessive irrigation, runoff can be very substantial 
(National Research Council, 1993). 

Yes No 

Controlled irrigation. Explanation: sprinkle or drip irrigation do not easily flush out 
chemicals. 

Yes No 

Field is only naturally drained. Explanation: artificial drains can lead to a faster loss of 
the contaminant (USDA, 1997). 

Yes No 

Spreading on frozen ground or foliage is avoided. Explanation: losses through runoff 
may be severe if this is not avoided (National Research Council, 1993). 

Yes No 

Usage of winter cover crops. Explanation: this may reduce runoff (USDA, 1997). Yes No 

Soil organic matter management. Explanation: returning crop residues and animal 
wastes to soils helps to maintain soil organic matter content; practices that harvest or 
destroy residues tend to reduce soil organic matter, leading to greater losses from the 
field (USDA, 1997). 

Yes No 

 

 





 

 

Appendix IV. Example on how to calculate the grey WF based on these guidelines 

 

A cotton farm in India in the state of Gujarat (see 

approximate location marked as a red arrow in the map) has 

a production area of 6 hectares (ha) and a total production 

of 1.2 tonnes (t) per year. The farm has therefore a yield of 

0.2 t/ha per year. The farmer applies 0.0005 t of the 

pesticide Endosulfan per hectare in the growing season. 

 

In this example we want to calculate the grey water 

footprint (GWF) of the production process of growing 

cotton of the farm and the corresponding GWF of the 

cotton, associated to the application of the pesticide 

Endosulfan, based on these tier 1 supporting guidelines. 

 

The grey water footprint (GWF) is calculated as described in Chapter 3, by dividing the load of Endosulfan 

entering the freshwater system (L) by the difference between the maximum and natural concentration of 

Endosulfan in the freshwater system, following Equation 3 (Chapter 3): 

 

natmax cc

L


GWF  

 

In the case of diffuse pollution, the load (L) to the freshwater system depends on the fraction of applied 

chemical substance on the field that will reach the water system. Therefore it is necessary to know the amount of 

Endosulfan applied on the field (Appl) and the leaching-runoff fraction (α). The load (L) is calculated using 

Equation 5 (Chapter 3): 

 

ApplL   

 

Appl is the amount of chemical applied per area. In this example, Endosulfan has an application rate of 0.0005 

t/ha and the farm has a total area of 6 ha. Therefore Appl = AR x Area = 0.003 t.  

 

To estimate the leaching-runoff fraction (α) of the pesticide Endosulfan at tier 1 level, the guidelines in Section 

4.5 can be followed. There it is suggested, if no local data on environmental factors or agricultural practices are 

available, to use the estimated global average leaching-runoff fraction for pesticides in general, which is 0.01 

(Table 1, Chapter 4). The load entering the water body would therefore be: 

 

L = 0.01 × 0.003 t = 0.00003 t (=0.03 kg) 
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If local data are available (either from the farms directly, through literature or the supporting information and 

maps in Appendices I and II), one can determine the leaching-runoff potential (Table 6 Section 4.5) and use 

Equation 9 (Chapter 4):  
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The variables necessary are the minimum (αmin = 0.0001) and maximum (αmax = 0.1) leaching-runoff fractions 

for pesticides (Table 1, Chapter 4), as well as the score (s) and weight (w) per leaching-runoff influencing factor, 

With the help of Table 6, we find the following scores for the leaching-runoff potential per factor: 

 

 The average Koc value of Endosulfan = 11500 L/kg (see AERU, 2013). The score for the leaching-runoff 

potential is therefore 0. 

 The persistency = 50 days (see AERU, 2013), which implies a score for the leaching-runoff potential of 

0.67. 

 The texture where the farm is located in Gujarat is loamy (see Appendix II, Map 2); the score for the 

leaching-runoff potential is therefore 0.67 for leaching and 0.33 for runoff. The probability therefore that 

Endosulfan will rather end up in groundwater than in surface water is higher. 

 The organic matter content is between 41 and 80 (see Appendix II, Map 8); the score for the leaching-runoff 

potential is therefore 0.33. 

 For the rain intensity there is no information available, therefore (as suggested in Chapter 4) a score for the 

leaching-runoff potential of 0.5 is used. 

 Net-precipitation is below 600 mm per year (see Appendix II, Map 5), which equals to a score for the 

leaching-runoff potential of 0. 

 For the agricultural management practice, if there is no information available, these guidelines suggest 

classifying depending on the development stage of the region. In our case the farmers in Gujarat are not 

trained regarding better management practices, so we assume the management practice to be “worst”. The 

score for the leaching-runoff potential would therefore be 1. 

 

Once the scores for all influencing factors are obtained, the values can be inserted into the above equation, as 

well as the corresponding weights as follows: 
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We can recalculate the load of Endosulfan entering the water system with this estimated leaching-runoff 

fraction: 

 

L = 0.046 × 0.003 t = 0.00014 t (=0.14 kg) 

 

As the result shows, due to the chemical characteristics of Endosulfan, the local environmental circumstances in 

Gujarat and the agricultural practices of the farmer, the load of Endosulfan entering the water system is about 

five times higher than if the load was calculated based on the global average leaching-runoff fraction of 

pesticides. The example shows once more how important regional specific influencing factors are, when more 

regional specific studies are to be assessed. 

 

The GWF can then be calculated by using the maximum allowable concentration of Endosulfan (= 0.003 µg/l, 

see Table 11 Section 5.3) and the natural background concentration (= 0 µg/l, since pesticides do not naturally 

occur). Note that 0.003 µg/l can be converted to 3×10-12 t/m3. 

 

The GWF of the farm due to Endosulfan is: 

 

GWF  0.00014 t

31012 t/m3 0 t/m3
 46106  m3  

 

The GWF of one tonne of cotton produced at the farm is: 

 

GWF  46106  m3

1.2 t
 38106 m3 /t  
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