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Summary  

 

Water Footprint Assessment is a quickly growing field of research, but as yet little attention has been paid to the 

uncertainties involved. This study investigates the sensitivity of water footprint estimates to changes in important 

input variables and quantifies the size of uncertainty in water footprint estimates. The study focuses on the green 

and blue water footprint of producing maize, soybean, rice and wheat in the Yellow River Basin in the period 

1996-2005. A grid-based daily water balance model at a 5 by 5 arc minute resolution was applied to compute 

green and blue water footprints of the four crops in the Yellow River Basin in the period considered. The 

sensitivity and uncertainty analysis focused on the effects on water footprint estimates at basin level (in m
3
/ton) 

from four key input variables: precipitation (PR), reference evapotranspiration (ET0), crop coefficient (Kc) and 

crop calendar. The one-at-a-time method was carried out to analyse the sensitivity of the water footprint of crops 

to changes in the input variables. Uncertainties in crop water footprint estimates were quantified through Monte 

Carlo simulations.  

 

The results show that the water footprint of crops is most sensitive to ET0 and Kc, followed by crop calendar and 

PR. Blue water footprints were more sensitive to input variability than green water footprints. The smaller the 

annual blue water footprint, the higher its sensitivity to changes in PR, ET0 and Kc. The uncertainties in the total 

water footprint of a crop due to combined uncertainties in climatic inputs (PR and ET0) were about ± 20% (at 

95% confidence interval). The effect of uncertainties in ET0 was dominant compared to that of precipitation. The 

uncertainties in the total water footprint of a crop as a result of combined key input uncertainties were on average 

± 26% (at 95% confidence level). The sensitivities and uncertainties differ across crop types, with highest 

sensitivities and uncertainties for soybean. 

          





 

1. Introduction 

 

More than two billion people live in highly water stressed areas (Oki and Kanae, 2006), and the pressure on 

freshwater will inevitably be intensified by population growth, economic development and climate change in the 

future (Vörösmarty et al., 2000). The water footprint (Hoekstra, 2003) is increasingly recognized as a suitable 

indicator of human appropriation of freshwater resources and is becoming widely applied to get better 

understanding of the sustainability of water use. In the period 1996-2005, agriculture contributed 92% to the 

total water footprint of humanity (Hoekstra and Mekonnen, 2012).  

 

Water footprints within the agricultural sector have been extensively studied, mainly focusing on the water 

footprint of crop production, at scales from a sub-national region (e.g. Aldaya and Llamas, 2008; Zeng et al., 

2012; Sun et al., 2013), and a country (e.g. Ma et al., 2006; Hoekstra and Chapagain, 2007b; Kampman, et al., 

2008; Liu and Savenije, 2008; Bulsink et al., 2010; Ge et al., 2011) to the globe (Hoekstra and Chapagain, 

2007a; Liu et al., 2010; Siebert and Döll, 2010; Mekonnen and Hoekstra, 2011; Hoekstra and Mekonnen, 2012). 

The green or blue water footprint of a crop is normally expressed by a single volumetric number referring to an 

average value for a certain area and period. However, the water footprint of a crop is always estimated based on 

a large set of assumptions with respect to the modelling approach, parameter values, and datasets for input 

variables used, so that outcomes carry substantial uncertainties (Mekonnen and Hoekstra, 2010; Hoekstra et al., 

2011). In order to provide realistic information to stakeholders in water governance, analysing the sensitivity and 

the magnitude of uncertainties in the results of a Water Footprint Assessment in relation to assumptions and 

input variables would be useful (Hoekstra, et al., 2011; Mekonnen and Hoekstra 2011).  

 

Together with the carbon footprint and ecological footprint, the water footprint is part of the “footprint family of 

indicators” (Galli et al., 2012), a suite of indicators to track human pressure on the surrounding environment. 

Nowadays, it is not hard to find information in literature on uncertainties in the carbon footprint of food products 

(Röös et al., 2010, 2011) or uncertainties in the ecological footprint (Parker and Tyedmers, 2012). But there are 

hardly any sensitivity or uncertainty studies available in the water footprint field (Hoekstra et al., 2011), while 

only some subjective approximations and local rough assessments exist (Mekonnen and Hoekstra, 2010, 2011; 

Hoekstra et al., 2012; Mattila et al., 2012). Bocchiola et al. (2013) assessed the sensitivity of the water footprint 

of maize to potential changes of certain selected weather variables in Northern Italy. Guieysse et al. (2013) 

assessed the sensitivity of the water footprint of fresh algae cultivation to changes in methods to estimate 

evaporation.  

 

The objectives of this study are (1) to investigate the sensitivity of the water footprint of a crop to changes in key 

input variables, and (2) to quantify the uncertainty in green, blue and total water footprints of crops due to 

uncertainties in input variables at river basin level. The study focuses on the water footprint of producing maize, 

soybean, rice and wheat in the Yellow River Basin, China, for each separate year in the period 1996-2005. 

Uncertainty in this study refers to the output uncertainty that accumulates due to the uncertainties in inputs that is 

propagated through the water footprint accounting process and is reflected in the resulting estimates (Walker et 

al., 2003). 



 

2. Study area 

 

The Yellow River Basin (YRB), drained by the Yellow River (Huanghe), is the second largest river basin in 

China with a drainage area of 795×10
3
 km

2 
(YRCC, 2011). The Yellow River is 5,464 km long, originates from 

the Bayangela Mountains of the Tibetan Plateau, flows through nine provinces (Qinghai, Sichuan, Gansu, 

Ningxia, Inner Mongolia, Shanxi, Henan and Shandong), and finally drains into the Bohai Sea (YRCC, 2011). 

The YRB is usually divided into three reaches: the upper reach (upstream of Hekouzhen, Inner Mongolia), the 

middle reach (upstream of Taohuayu, Henan province) and the lower reach (draining into the Bohai Sea) (see 

Figure 1). 

 

The YRB is vital for food production, natural resources and socioeconomic development of China (Cai et al., 

2011). The cultivated area of the YRB accounts for 13% of the national total (CMWR, 2010). In 2000, the basin 

accounted for 14% of the country’s crop production with about 7 million ha of irrigated land at a total agriculture 

area in the basin of 13 million ha (Ringler et al., 2010). The water of the Yellow River supports 150 million 

people with a per capita blue water availability of 430 m
3
 per year (Falkenmark and Widstrand, 1992; Ringler et 

al., 2010). The YRB is a net virtual water exporter (Feng et al., 2012) and suffering severe water scarcity. The 

blue water footprint in the basin is larger than the maximum sustainable blue water footprint (runoff minus 

environmental flow requirements) during eight months a year (Hoekstra et al., 2012).   

 

 

Figure 1. The three reaches of the Yellow River Basin.  



 

3. Method and data 

 

3.1  Crop water footprint accounting 

 

Annual green and blue water footprints (WF) of producing maize, soybean, rice, and wheat in the YRB for the 

study period were estimated using the grid-based dynamic water balance model developed by Mekonnen and 

Hoekstra (2010). The model has a spatial resolution of 5 by 5 arc minute (about 7.4 km × 9.3 km at the latitude 

of the YRB). The model is used to compute different components of crop water use (CWU) according to the 

daily soil water balance (Mekonnen and Hoekstra, 2010, 2011). The daily root zone soil water balance for 

growing a crop in each grid cell in the model can be expressed in terms of soil moisture ( [ ], mm) at the end of 

the day (Mekonnen and Hoekstra, 2010): 

 

 [ ]   [   ]   [ ]    [ ]    [ ]    [ ]     [ ]    [ ]                                                                                        (1) 

 

where  [   ] (mm) refers to the soil water content on day (t-1),  [ ] (mm) the irrigation water applied on day t, 

  [ ] (mm) precipitation,   [ ] (mm) capillary rise from the groundwater,   [ ] (mm) water runoff,    [ ] (mm) 

actual evapotranspiration and   [ ] (mm) deep percolation on day t.  

 

The green water footprint (       , m
3
 ton

-1
) and blue water footprint (      , m

3
 ton

-1
) per unit mass of crop 

were calculated by dividing the green (        , m
3
 ha

-1
) and blue (       , m

3
 ha

-1
) CWU by the crop yield 

( , ton ha
-1

), respectively (Hoekstra, et al., 2011). The total WF refers to the sum of green and blue WF:  

 

        
        

 
⁄                                                                                                                                                        (2) 

       
       

 ⁄                                                                                                                                                            (3) 

                                                                                                                                                  (4) 

 

CWUgreen and CWUblue over the crop growing period (in m
3
 ha

-1
) were calculated from the accumulated 

corresponding actual crop evapotranspiration (  , mm day
-1

) (Hoekstra et al., 2011):  

 

            ∑        
   
                                                                                                                           (5) 

           ∑       
   
                                                                                                                               (6) 

 

The accumulation was done over the growing period from the day of planting (d=1) to the day of harvest (lgp, 

the length of growing period in days). The factor 10 converts water depths (in mm) into water volumes per unit 

land surface area in m
3 
ha

-1
. The daily actual    (mm day

-1
) was computed according to Allen et al. (1998) as: 

 

     [ ]    [ ]     [ ]                                                                                                                              (7) 
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where   [ ] is the crop coefficient,   [ ] a dimensionless transpiration reduction factor dependent on available 

soil water and    [ ] the reference evapotranspiration (mm day
-1

). The crop calendar and    values for each crop 

were assumed to be constant for the whole basin as shown in Table 1. Ks[t] is assessed based on a daily function 

of the maximum and actual available soil moisture in the root zone (Mekonnen and Hoekstra, 2011): 

 

  [ ]  {
 [ ]

          [ ]
          [ ]            [ ]

                                                 
                                                                                        (8) 

 

where Smax[t] is the maximum available soil water in the root zone (mm, when soil water content is at field 

capacity), and p the fraction of Smax that a crop can extract from the root zone without suffering water stress. 

 

WF of the four crops in the YRB were estimated covering both rain-fed and irrigated agriculture. In the case of 

rain-fed crop production, blue CWU is zero and green CWU (m
3
/ha) was calculated by aggregating the daily 

values of actual crop evapotranspiration over the length of the growing period. In the case of irrigated crop 

production, the green water use was assumed to be equal to the actual crop evapotranspiration for the case 

without irrigation. The blue water use was estimated as the CWU simulated in the case with sufficient irrigation 

water applied minus the green CWU in the same condition but without irrigation (Mekonnen and Hoekstra, 2010, 

2011).  

 

Table 1. Crop characteristics for maize, soybean, rice and wheat in the Yellow River Basin. 

  
Kc_ini Kc_mid Kc_end Planting date 

Length of growing 
period (days) 

Maize 0.70 1.20 0.25 1 April 150 

Soybean 0.40 1.15 0.50 1 June 150 

Rice 1.05 1.20 0.90 1 May 180 

Wheat 0.70 1.15 0.30 1 October 335 

Sources: Allen et al. (1998); Chen et al. (1995); Chapagain and Hoekstra (2004). 

 

The crop yield is influenced by water stress (Mekonnen and Hoekstra, 2010). The actual harvested yield (Y, ton 

ha
-1

) at the end of crop growing period for each grid cell was estimated following the equation proposed by 

Doorenbos and Kassam (1979): 

 

(  
 

  
)       

∑   
   
   

   
                                                                                                                                  (9) 

 

where    is the maximum yield (ton ha
-1

),    the yield response factor, and CWR the crop water requirement for 

the whole growing period (mm period
-1

) (which is equal to Kc  ET0).  
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3.2 Sensitivity and uncertainty analysis 

 
The estimation of WF of crop growing requires a number of input data, including: daily precipitation (PR), daily 

reference evapotranspiration (ET0), crop coefficients in the different growing stages (Kc), and crop calendar 

(planting date and length of the growing period). The one-at-a-time method was applied to investigate the 

sensitivity of CWU, Y and WF to changes in these input variables. The uncertainties in WF due to uncertainties in 

the four input variables were assessed through Monte Carlo simulations.  

 

3.2.1    Sensitivity analysis  

 
The ‘one-at-a-time’ or ‘sensitivity curve’ method is a simple but practical way of sensitivity analysis to 

investigate the response of an output variable to variation of input values (Hamby, 1994; Sun et al, 2012). With 

its simplicity and intuitionism, the method is popular and has been widely used (Ahn, 1996; Goyal, 2004; Xu et 

al., 2006a,b; Estévez et al., 2009). The method was performed by introducing fractional changes to one input 

variable while keeping other inputs constant. The ‘sensitivity curve’ of the resultant relative change in the output 

variable was then plotted against the relative change of the input variable. The sensitivity analysis was carried 

out for each year in the period 1996-2005. For each cropped grid cell, we varied each input variable within the 

range of the mean value ± 2SD (2× standard deviation), which represents the 95% confidence interval for the 

input variable. Then, the annual average level of the responses in CWU, Y and (green, blue and total) WF of the 

crops for the basin as a whole were recorded.  

 

3.2.2    Uncertainty analysis  

 
The advantage of uncertainty analysis with Monte Carlo (MC) simulation is that the model to be tested can be of 

any complexity (Meyer, 2007). MC simulations were carried out at the basin level to quantify the uncertainties in 

estimated WF due to uncertainties in individual or multiple input variables. We assumed that systematic errors in 

original climate observations at stations have been removed under a strict quality control and errors indicated as 

a proportion of input climatic variables are random, independent and close to a normal (Gaussian) distribution. 

The uncertainty analysis was carried out separately for three years within the study period: 1996 (wet year), 2000 

(dry year) and 2005 (average year). For each MC simulation, 1,000 runs were performed. Based on the set of WF 

estimates from those runs, the mean (μ) and standard deviation (SD) is calculated; with 95% confidence, WF 

falls in the range of μ ± 2SD. The SD will be expressed as a percentage of the mean.  

 

3.2.3    Input uncertainty 

 
Uncertainty in precipitation (PR) 

Uncertainties in the CRU-TS grid precipitation values come from two sources: the measurement errors inherent 

in station observations, and errors which occur during the interpolation of station data in constructing the grid 

database (Zhao and Fu, 2006; Fekete et al, 2004; Phillips and Marks, 1996). Zhao and Fu (2006) compared the 

spatial distribution of precipitation as in the CRU database with the corresponding observations over China and 

revealed that the differences between the CRU data and observations vary from - 20% to 20% in the area where 

http://www.sciencedirect.com/science/article/pii/0304380095001913
http://www.sciencedirect.com/science/article/pii/0304380095001913
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the YRB is located. For this study, we assume a ± 20% range around the CRU precipitation data as the 95% 

confidence interval (2SD = 20%). 

  

Uncertainty in reference evapotranspiration (ET0) 

The uncertainties in the meteorological data used in estimating ET0 will be transferred into uncertainties in the 

ET0 values. The method used to estimate the CRU-TS ET0 dataset is the Penman-Monteith (PM) method (Allen 

et al., 1998). The PM method has been recommended (Allen et al., 1998) for its high accuracy at station level 

within ± 10% from the actual values under all ranges of climates (Jensen et al., 1990). With respect to the 

gridded ET0 calculation, the interpolation may cause additional error (Thomas, 2008; Phillips and Marks, 1996).  

There is no detailed information on uncertainty in the CRU-TS ET0 dataset. We estimated daily ET0 values (mm 

day
-1

) for the period 1996-2005 from observed climatic data at 24 meteorological stations spread out in the YRB 

(CMA, 2008) by the PM method. Then we compared, station by station, the monthly averages of those calculated 

daily ET0 values to the monthly ET0 values in the CRU-TS dataset (Figure 2a). The differences between the 

station values and CRU-TS values ranged from -0.23 to 0.27mm day
-1

 with a mean of 0.005 mm day
-1 

(Figure 

2b). The standard deviation (SD) of the differences was 0.08 mm day
-1

, 5% from the station values, which 

implies an uncertainty range of ± 10% (2SD) at 95% confidence interval. We added the basin level uncertainty in 

monthly ET0 values due to uncertainties in interpolation (± 10% at 95% confidence level) and the uncertainty 

related to the application of the PM method (another ± 10% at 95% confidence level) to arrive at an overall 

uncertainty of ± 20% (2SD) for the ET0 data. We acknowledge that this is a crude estimate of uncertainty, but 

there is no better. 

  

         

Figure 2. Differences between monthly averages of daily ET0 data from CRU-TS and station-based values for the 

Yellow River Basin, 1996-2005.  

 

Uncertainty in crop characteristics 

We used the Kc values from Table 1 for the whole basin. According to Jagtap and Jones (1989), the Kc value for 

a certain crop can vary by 15%. We adopted this value and assumed the 95% uncertainty range falls within ± 15% 

(2SD) from the mean Kc values. Referring to the crop calendar, we assumed that the planting date for each crop 

fluctuated within ± 30 days from the original planting date used, holding the same length of the crop growing 

period. Table 2 summarises the uncertainty scenarios considered in the study.  

 

app:ds:meteorological
app:ds:station
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Table 2. Input uncertainties for crop water footprint accounting in the Yellow River Basin. 

Input variable Unit 95% confidence interval Distribution 

Precipitation (PR) mm day
-1

 ± 20% (2SD) Normal 

Reference evapotranspiration (ET0) mm day
-1

 ± 20% (2SD) Normal 

Crop coefficient (Kc) - ± 15% (2SD) Normal 

Planting date (D) days ± 30 Uniform (discrete) 

 

 
3.3 Data 

 

The GIS polygon data for the YRB were extracted from the HydroSHEDS dataset (Lehner, et al., 2008). Total 

monthly PR, monthly averages of daily ET0, number of wet days, and daily minimum and maximum 

temperatures at 30 by 30 arc minute resolution for 1996-2005 were extracted from CRU-TS-3.10 and 3.10.01 

(Harris, et al., 2013). Figure 3 shows PR and ET0 for the YRB in the study period. Daily values of precipitation 

were generated from the monthly values using the CRU-dGen daily weather generator model (Schuol and 

Abbaspour, 2007). Daily ET0 values were derived from monthly average values by curve fitting to the monthly 

average through polynomial interpolation (Mekonnen and Hoekstra, 2011). Data on irrigated and rain-fed areas 

for each crop at a 5 by 5 arc minute resolution were obtained from the MIRCA2000 dataset (Portmann et al., 

2010). Crop areas and yields within the YRB from MIRCA2000 were scaled to fit yearly agriculture statistics per 

province of China (MAPRC, 2009; NBSC, 2006, 2007). Total available soil water capacity at a spatial resolution 

of 5 by 5 arc minute was obtained from the ISRIC-WISE version 1.2 dataset (Batjes, 2012).  

 

 

 

Figure 3. Monthly precipitation (PR) and monthly averages of daily reference evapotranspiration (ET0) in the 

Yellow River Basin from the CRU-TS database, for the period 1996-2005. 





 

4. Results 

 
4.1 Sensitivity of CWU, Y and WF to variability of input variables  

 
4.1.1   Sensitivity to variability of precipitation (PR) 

 

The average sensitivities of CWU, Y and WF to variability of precipitation for the study period were assessed by 

varying the precipitation between ± 20% as shown in Figure 4. An overestimation in precipitation leads to a 

small overestimation of green WF and a relatively significant underestimation of blue WF. A similar result was 

found for maize in the Po valley of Italy by Bocchiola et al. (2013). The sensitivity of WF to input variability is 

defined by the combined effects on the CWU and Y. Figure 4 shows the overall result for the YRB, covering both 

rain-fed and irrigated cropping.  

 

Changes in Precipitation
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Figure 4. Sensitivity of CWU, Y and WF to changes in precipitation (PR), 1996-2005.  

 
For irrigated agriculture, a reduction in green CWU due to smaller precipitation will be compensated with an 

increased blue CWU, keeping total CWU and Y unchanged. Therefore, the changes in Y were due to the changes 

in the yields in rain-fed agriculture. The relative changes in total WF were always smaller than ± 5% because of 

the opposite direction of sensitivities of green and blue WF, as well as the domination of green WF in the total. It 
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can be noted that the sensitivity of CWU, Y and WF to input variability differs across crop types, especially 

evident in blue WF. Regarding the four crops considered, blue WF of soybean is most sensitive to variability in 

precipitation and blue WF of rice is least sensitive. The explanation lies in the share of blue WF in total WF. At 

basin level, the blue WF of soybean accounted for about 9% of the total WF, while the blue WF of rice was 

around 44% of the total, which is the highest blue water fraction among the four crops. The larger sensitivity of 

the blue WF of soybean to change in precipitation compared to that of rice shows that the smaller the blue water 

footprint the larger its sensitivity to a marginal change in precipitation. 

 
4.1.2   Sensitivity to variability of ET0 and Kc 

 

Figure 5 shows the average sensitivity of CWU, Y and WF to changes in ET0 within a range of ± 20% from the 

mean for the period 1996-2005. The influence of changes in ET0 on WF are greater than the effect of changes in 

precipitation. Both green and blue CWU increase with the rising ET0. An increase in ET0 will increase the crop 

water requirement. For rain-fed crops, the crop water requirement may not be fully met, leading to crop water 

stress and thus lower Y. For irrigated crops under full irrigation, the crop will not face any water stress, so that 

the yield will not be affected. The decline in yield at increasing ET0 at basin level in Figure 5 is therefore due to 

yield reductions in rain-fed agriculture only.  
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Figure 5. Sensitivity of CWU, Y and WF to changes in reference evapotranspiration (ET0), 1996-2005.  
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Due to the combined effect of increasing CWU and decreasing Y at increasing ET0, an overestimation in ET0 

leads to a larger overestimation of WF. The strongest effect of ET0 changes on blue WF was found for soybean, 

with a relative increase reaching up to 105% with a 20% increase in ET0, while the lightest response was found 

for the case of rice, with a relative increase in blue WF of 34%. The sensitivities of green WF were similar 

among the four crops. The changes in total WF were always smaller and close to ± 30% in the case of a ± 20% 

change in ET0.  

 

As shown in Equation 7, Kc and ET0 have the same effect on crop evapotranspiration. Therefore, the effects of 

changes in Kc on CWU, Y and WF are exactly the same as the effects of ET0 changes as shown in Figure 6. The 

changes in total WF were less than ± 25% in the case of a ± 15% change in Kc values. 
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Figure 6. Sensitivity of CWU, Y and WF to changes in the crop coefficient (Kc), 1996-2005.  

 
4.1.3   Sensitivity to changing crop planting date (D) 

 

The responses of CWU, Y and WF to the change of crop planting date with constant growing period are plotted in 

Figure 7. There is no linear relationship between the cropping calendar and WF. Therefore, no generic 

information can be summarised for the sensitivity of WF of crops to a changing cropping calendar. But some 

interesting regularity can still be found for maize, soybean and rice: WF was smaller at later planting date, 
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mainly because of the decreased blue CWU and increased Y. We found a reduced ET0 over the growing period 

with delayed planting of the three crops, which leads to a decrease in the crop water requirement, while 

precipitation over this later period was higher for maize and slightly lower for soybean and rice. Since blue WF is 

more sensitive to ET0 than to PR, the decreased crop water requirement was the dominant factor, resulting in a 

decreased blue CWU and increased Y. This is consistent with the result observed for maize in western Jilin 

Province of China by Qin et al. (2012). Late planting, particularly for maize and rice, could save blue water, 

while increasing Y (for maize). Meanwhile, a different response curve was observed for wheat. Green WF 

increased when the planting date was delayed and blue WF decreased, but changes are small in both cases. The 

explanation for the unique sensitivity curve for wheat is that the crop is planted in October after the rainy season 

(June to September) and the growing period lasts 335 days (Table 1), which leads to a low sensitivity to the 

precise planting date. In general, the results show that the crop calendar is one of the factors affecting the 

magnitude of crop water consumption. A proper planning of the crop-growing period is therefore vital from the 

perspective of water resources use, especially in arid and semi-arid areas like the YRB. 
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Figure 7. Sensitivity of CWU, Y and WF to changes in crop planting date, 1996-2005.  
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4.1.4   Annual variation of sensitivities in crop water footprints 

 

As an example of the annual variation of sensitivities, Table 3 presents the sensitivity of blue, green and total WF 

of maize to changes in key input variables for each specific year in the period 1996-2005. As can be seen from 

the table, the sensitivity of green WF to the four key input variables was relatively stable around the mean annual 

level. But there was substantial inter-annual fluctuation of sensitivity of blue WF, observed for all four crops. For 

each year and each crop, the slope (S) of the sensitivity curve of change in blue WF versus change in PR, ET0 

and Kc was computed, measuring the slope at mean values for PR, ET0 and Kc. The slopes (representing the 

percentage change in blue WF per percentage change in input variable) were plotted against the corresponding 

blue WF (Figure 8). The results show – most clearly for maize and rice – that the smaller the annual blue WF, the 

higher the sensitivity to changes in PR, ET0 or Kc. As shown by the straight curves through the data for maize 

(Figure 8), we can roughly predict the sensitivity of blue WF to changes in input variables based on the size of 

blue WF itself. The blue WF of a specific crop in a specific field will be more sensitive (in relative terms) to the 

three inputs in wet years than in dry years, simply because the blue WF will be smaller in a wet year.  

 

Figure 8. The slope (S) of the sensitivity curve for the blue WF for each crop for each year in the period 1996-
2005 (vertical axis) plotted against the blue WF of the crop in the respective year (x-axis). The graph on the left 
shows the relative sensitivity of blue WF to PR; the graph on the right shows the relative sensitivity of blue WF to 
ET0 or Kc. The sensitivities to ET0 and Kc were the same. The trend lines in both graphs refer to the data for maize.  

 

 
4.2 Uncertainties in WF per unit of crop due to input uncertainties 

 

In order to assess the uncertainty in WF (in m
3
 ton

-1
) due to input uncertainties, Monte Carlo (MC) simulations 

were performed at the basin level for 1996 (wet year), 2000 (dry year) and 2005 (average year). For each crop, 

we carried out a MC simulation for four input uncertainty scenarios, considering the effect of: (1) uncertainties in 

PR alone, (2) uncertainties in ET0 alone, (3) uncertainties in the two climatic input variables (PR and ET0), and 

(4) combined uncertainties in all four key input variables considered in this study (PR+ET0+Kc+D). The 

resultant uncertainties in blue, green and total WF of the four crops for the four scenarios and three years are 

shown in Table 4. The uncertainties are expressed in terms of values for 2SD as a percentage of the mean value; 

the range of ± 2SD around the mean value gives the 95% confidence intervals.  
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Table 3. Sensitivity of annual water footprint of maize to input variability at the level of the Yellow River Basin, for 
the period 1996-2005. 

 

WF PR   ET0   Kc   D 

(m
3
 ton

-1
) -20% 20%   -20% 20%   -15% 15%   -30d  30d 

Blue WF 

1996 201 27.3 -18.1   -52.2 71.9   -41.1 52.3   58.3 -40.7 

1997 381 16.7 -14.0   -46.9 55.0   -36.1 40.7   -1.9 -11.3 

1998 209 24.8 -15.8   -53.0 70.4   -41.6 51.4   25.7 -34.4 

1999 308 26.1 -17.7   -50.1 67.4   -39.3 49.1   32.3 -32.1 

2000 342 17.6 -13.9   -45.6 54.4   -35.3 40.2   35.7 -42.7 

2001 439 14.6 -12.2   -43.7 49.9   -33.6 37.0   22.8 -27.1 

2002 296 23.2 -17.9   -50.5 62.4   -39.3 45.9   -13.0 -6.2 

2003 233 28.7 -20.5   -55.5 72.0   -43.5 52.7   35.7 -37.2 

2004 260 23.6 -16.9   -49.2 64.6   -38.5 47.1   46.5 -37.7 

2005 288 24.6 -16.7   -49.8 71.0   -39.3 51.3   19.8 -31.7 

Mean 295 22.7 -16.4   -49.6 63.9   -38.8 46.8   26.2 -30.1 

Green WF 

1996 754 -1.4 0.9   -18.4 18.2   -13.8 13.7   -7.3 -2.1 

1997 820 -2.0 1.3   -19.1 17.8   -14.2 13.5   -10.7 -1.1 

1998 792 -1.3 0.7   -19.0 18.3   -14.2 13.8   -7.0 -2.1 

1999 864 -2.1 1.3   -19.0 17.7   -14.1 13.4   -8.2 -3.4 

2000 831 -2.0 1.3   -18.9 17.8   -14.1 13.5   -6.9 -3.8 

2001 819 -2.3 1.7   -18.6 16.9   -13.9 12.9   -8.5 -2.6 

2002 865 -1.7 1.2   -18.4 17.6   -13.8 13.3   -6.3 -3.7 

2003 882 -1.4 1.0   -18.8 18.4   -14.1 13.9   -6.0 -3.5 

2004 838 -1.5 0.9   -19.2 18.5   -14.4 14.0   -5.2 -5.3 

2005 733 -2.1 1.6   -19.1 17.2   -14.2 13.1   -9.0 -1.8 

Mean 820 -1.8 1.2   -18.9 17.9   -14.1 13.5   -7.5 -2.9 

Total WF 

1996 955 4.7 -3.1   -25.5 29.5   -19.6 21.8   6.5 -10.2 

1997 1200 3.9 -3.6   -27.9 29.6   -21.2 22.1   -7.9 -4.3 

1998 1001 4.2 -2.8   -26.1 29.2   -19.9 21.7   -0.2 -8.9 

1999 1172 5.3 -3.7   -27.1 30.8   -20.7 22.7   2.4 -10.9 

2000 1172 3.7 -3.1   -26.7 28.5   -20.3 21.3   5.5 -15.1 

2001 1257 3.6 -3.1   -27.4 28.4   -20.8 21.3   2.4 -11.2 

2002 1160 4.7 -3.7   -26.6 29.0   -20.3 21.6   -8.0 -4.3 

2003 1116 4.9 -3.5   -26.5 29.6   -20.2 22.0   2.7 -10.5 

2004 1098 4.4 -3.3   -26.3 29.4   -20.1 21.8   7.0 -13.0 

2005 1021 5.4 -3.6   -27.7 32.4   -21.3 23.9   -0.9 -10.2 

Mean 1115 4.5 -3.3   -26.8 29.6   -20.4 22.0   1.0 -9.9 

 



 

 

 

Table 4. 2SD for the probability distribution of the blue, green and total WF of maize, soybean, rice and wheat, expressed as % of the mean value. 

Crop Perturbed inputs 
1996 (wet year) 

 
2000 (dry year) 

 
2005 (average year) 

Blue WF Green WF Total WF   Blue WF Green WF Total WF   Blue WF Green WF Total WF 

Maize 

PR 14 4 0.2   10 4 0.2   8 4 0 

ET0 48 12 20   38 12 20   36 12 18 

PR+ET0 48 12 20   42 12 20   38 14 20 

PR+ET0+Kc+D 76 18 24   64 18 24   52 18 24 

Soybean 

PR 22 1.2 0.2   18 2 2 

 

14 2 0.8 

ET0 56 16 18   50 14 16   40 14 16 

PR+ET0 62 16 18   56 14 18   44 14 18 

PR+ET0+Kc+D 98 26 30   94 26 32   68 26 28 

Rice 

PR 10 6 0   8 6 0   7 6 0 

ET0 34 12 20   30 12 20   30 12 20 

PR+ET0 34 12 20   32 12 20   32 13 20 

PR+ET0+Kc+D 62 16 28   56 20 30   50 18 28 

Wheat 

PR 14 2 0.4   14 2 0.4   16 2 0 

ET0 48 16 20   46 16 18   52 16 18 

PR+ET0 52 16 20   48 16 18   54 16 18 

PR+ET0+Kc+D 68 20 24   66 20 24   74 20 24 
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Figure 9. Probability distribution of the total WF of maize given the combined uncertainties in PR and ET0 (graphs 
at the left) and given the combined uncertainties in PR, ET0, Kc and D (graphs at the right), for the years 1996, 
2000 and 2005. 
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In general, for all uncertainty scenarios, blue WF shows higher uncertainties than green WF. Uncertainties in 

green WF are similar for the three different hydrologic years. Uncertainties in blue WF are largest (in relative 

sense) in the wet year, conform our earlier finding that blue WF is more sensitive to changes in input variables in 

wet years. The uncertainties in WF due to uncertainties in PR are much smaller than the uncertainties due to 

uncertainties in ET0. Uncertainties in PR hardly affect the assessment of total WF of crops in all three different 

hydrologic years. Among the four crops, soybean had the highest uncertainty in green and blue WF. The 

uncertainty in total WF for all crops was within the range of ± 18 to 20% (at 95% confidence interval) when 

looking at the effect of uncertainties in the two climate input variables only, and within the range of ± 24 to 32% 

(again at 95% confidence interval) when looking at the effect of uncertainties in all four input variables 

considered. In all cases, the most important uncertainty source is the value of ET0. Figure 9 shows, for maize as 

an example, the probability distribution of the total WF (in m
3
 ton

-1
) given the uncertainties in either the two 

climatic input variables or all four input variables.     

 





 

 

5. Conclusion 

 

This report provides the first detailed study of the sensitivities and uncertainties in the estimation of green and 

blue water footprints of crop growing related to input variability and uncertainties at river basin level. The result 

shows that at the level of the Yellow River Basin: (1) WF is most sensitive to errors in ET0 and Kc followed by 

the crop planting date and precipitation; (2) blue WF is more sensitive and has more uncertainty than green WF; 

(3) uncertainties in total (green+blue) WF as a result of climatic uncertainties are around ± 20% (at 95% 

confidence level) and dominated by effects from uncertainties in ET0; (4) uncertainties in total WF as a result of 

all uncertainties considered are on average ± 26% (at 95% confidence level); (5) the sensitivities and 

uncertainties in WF estimation, particularly in blue WF estimation, differ across crop types and vary from year to 

year.  

 

An interesting finding was that the smaller the annual blue WF (consumptive use of irrigation water), the higher 

the sensitivity of the blue WF to variability in the input variables PR, ET0 and Kc. Furthermore, delaying the crop 

planting date was found to potentially contribute to a decrease of the WF of spring or summer planted crops 

(maize, soybean, rice), most in particular relevant for the blue WF. Therefore, optimizing the planting period for 

such crops could save irrigation water in agriculture.  

 

The study confirmed that it is not enough to give a single figure of WF without providing an uncertainty range. A 

serious implication of the apparent uncertainties in Water Footprint Assessment is that it is difficult to establish 

trends in WF reduction over time, since the effects of reduction have to be measured against the background of 

natural variations and uncertainties. 

 

The current study shows possible ways to assess the sensitivity and uncertainty in the water footprint of crops in 

relation to variability and errors in input variables. Not only can the outcomes of this study be used as a reference 

in future sensitivity and uncertainty studies on WF, but the results also provide a first rough insight in the 

possible consequences of changes in climatic variables like precipitation and reference evapotranspiration on the 

water footprint of crops. However, the study does not provide the complete picture of sensitivities and 

uncertainties in Water Footprint Assessment. Firstly, the study is limited to the assessment of the effects from 

only four key input variables; uncertainties in other input variables were not considered, like for instance 

uncertainties around volumes and timing of irrigation. Secondly, there are several models available for 

estimating the WF of crops. Our result is only valid for the model used, which is based on a simple soil water 

balance (Allen et al., 1998; Mekonnen and Hoekstra, 2010). Furthermore, the quantification of uncertainties in 

the four input variables considered is an area full of uncertainties and assumptions itself. Therefore, in order to 

build up a more detailed and complete picture of sensitivities and uncertainties in Water Footprint Assessment, a 

variety of efforts needs to be made in the future. In particular, we will need to improve the estimation of input 

uncertainties, include uncertainties from other input variables and parameters, and assess the impact of using 

different models on WF outcomes. Finally, uncertainty studies will need to be extended towards other crops and 

other water using processes, to other regions and at different spatial and temporal scales.  
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