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Abstract. This paper investigates the skill of 90-day low-

flow forecasts using two conceptual hydrological models

and one data-driven model based on Artificial Neural Net-

works (ANNs) for the Moselle River. The three models,

i.e. HBV, GR4J and ANN-Ensemble (ANN-E), all use fore-

casted meteorological inputs (precipitation P and potential

evapotranspiration PET), whereby we employ ensemble sea-

sonal meteorological forecasts. We compared low-flow fore-

casts for five different cases of seasonal meteorological forc-

ing: (1) ensemble P and PET forecasts; (2) ensemble P fore-

casts and observed climate mean PET; (3) observed climate

mean P and ensemble PET forecasts; (4) observed climate

mean P and PET and (5) zero P and ensemble PET forecasts

as input for the models. The ensemble P and PET forecasts,

each consisting of 40 members, reveal the forecast ranges

due to the model inputs. The five cases are compared for a

lead time of 90 days based on model output ranges, whereas

the models are compared based on their skill of low-flow

forecasts for varying lead times up to 90 days. Before fore-

casting, the hydrological models are calibrated and validated

for a period of 30 and 20 years respectively. The smallest

difference between calibration and validation performance is

found for HBV, whereas the largest difference is found for

ANN-E. From the results, it appears that all models are prone

to over-predict runoff during low-flow periods using ensem-

ble seasonal meteorological forcing. The largest range for

90-day low-flow forecasts is found for the GR4J model when

using ensemble seasonal meteorological forecasts as input.

GR4J, HBV and ANN-E under-predicted 90-day-ahead low

flows in the very dry year 2003 without precipitation data.

The results of the comparison of forecast skills with varying

lead times show that GR4J is less skilful than ANN-E and

HBV. Overall, the uncertainty from ensemble P forecasts

has a larger effect on seasonal low-flow forecasts than the

uncertainty from ensemble PET forecasts and initial model

conditions.

1 Introduction

Rivers in western Europe usually experience low flows in

late summer and high flows in winter. These two extreme

discharge phenomena can lead to serious problems. For ex-

ample, high-flow events are sudden and can put human life

at risk, whereas streamflow droughts (i.e. low flows) develop

slowly and can affect a large area. Consequently, the eco-

nomic loss during low-flow periods can be much bigger than

during floods (Pushpalatha et al., 2011; Shukla et al., 2012).

In the River Rhine, severe problems for freshwater supply,

water quality, power production and river navigation were

experienced during the dry summers of 1976, 1985 and 2003.

For that reason forecasting seasonal low flows (Towler et al.,

2013; Coley and Waylen, 2006; Li et al., 2008) and under-

standing low-flow indicators (Vidal et al., 2010; Fundel et al.,

2013; Demirel et al., 2013a; Wang et al., 2011; Saadat et al.,

2013; Nicolle et al., 2014) have both societal and scientific

value. The seasonal forecast of water flows is therefore listed

as one of the priority topics in the EU’s Horizon 2020 re-

search programme (EU, 2013). Further, there is an increasing

interest in incorporating seasonal flow forecasts in decision
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support systems for river navigation and power plant opera-

tion during low-flow periods. We are interested in forecasting

low flows with a lead time of 90 days, and in presenting the

effect of ensemble meteorological forecasts for three hydro-

logical models.

Generally, two approaches are used in seasonal hydrolog-

ical forecasting. The first one is a statistical approach, mak-

ing use of data-driven models based on relationships between

river discharge and hydroclimatological indicators (Wang et

al., 2011; van Ogtrop et al., 2011; Förster et al., 2014). The

second one is a dynamic approach running a hydrological

model with forecasted climate input.

The first approach is often preferred in regions where sig-

nificant correlations between river discharge and climatic

indicators exist, such as sea surface temperature anomalies

(Chowdhury and Sharma, 2009), AMO – Atlantic Multi-

decadal Oscillation (Ganguli and Reddy, 2014; Giuntoli et

al., 2013), PDO – Pacific Decadal Oscillation (Soukup et al.,

2009) and warm and cold phases of the ENSO – El Niño

Southern Oscillation – index (Chiew et al., 2003; Kalra et al.,

2013; Tootle and Piechota, 2004). Kahya and Dracup (1993)

identified the lagged response of regional streamflow to the

warm phase of ENSO in the southeastern United States. In

the Rhine Basin, no teleconnections have been found be-

tween climatic indices, e.g. NAO and ENSO, and river dis-

charges (Rutten et al., 2008; Bierkens and van Beek, 2009).

However, Demirel et al. (2013a) found significant correla-

tions between hydrological low-flow indicators and observed

low flows. They also identified appropriate lags and temporal

resolutions of low-flow indicators (e.g. precipitation, poten-

tial evapotranspiration, groundwater storage, lake levels and

snow storage) to build data-driven models.

The second approach is the dynamic seasonal forecast-

ing approach which has long been explored (Wang et al.,

2011; Van Dijk et al., 2013; Gobena and Gan, 2010; Fun-

del et al., 2013; Shukla et al., 2013; Pokhrel et al., 2013)

and has led to the development of the current ensemble

streamflow prediction system (ESP) used by different na-

tional climate services like the National Weather Service in

the United States. The seasonal hydrologic prediction sys-

tems are most popular in regions with a high risk of extreme

discharge situations like hydrological droughts (Robertson et

al., 2013; Madadgar and Moradkhani, 2013). Well-known

examples are the NOAA Climate Prediction Centre’s sea-

sonal drought forecasting system (available from: http://

www.cpc.ncep.noaa.gov), the University of Washington’s

Surface Water Monitoring system (Wood and Lettenmaier,

2006), Princeton University’s drought forecast system (avail-

able from: http://hydrology.princeton.edu/forecast) and the

University of Utrecht’s global monthly hydrological fore-

cast system (Yossef et al., 2012). These models provide in-

dications about the hydrologic conditions and their evolu-

tion across the modelled domain using available weather en-

semble inputs (Gobena and Gan, 2010; Yossef et al., 2012).

Moreover, Dutra et al. (2014) showed that global seasonal

forecasts of meteorological drought onset are feasible and

skilful using the standardized precipitation index (SPI) and

two data sets as initial conditions.

Many studies have investigated the seasonal predictability

of low flows in different rivers such as the Thames and dif-

ferent other rivers in the UK (Bell et al., 2013; Wedgbrow et

al., 2002, 2005), the Shihmen and Tsengwen rivers in Taiwan

(Kuo et al., 2010), the River Jhelum in Pakistan (Archer and

Fowler, 2008), more than 200 rivers in France (Sauquet et

al., 2008; Giuntoli et al., 2013), five semi-arid areas in South

Western Queensland, Australia (van Ogtrop et al., 2011), five

rivers including Limpopo basin and the Blue Nile in Africa

(Dutra et al., 2013; Winsemius et al., 2014), the Bogotá River

in Colombia (Felipe and Nelson, 2009), the Ohio in the east-

ern USA (Wood et al., 2002; Luo et al., 2007; Li et al., 2009),

the North Platte in Colorado, USA (Soukup et al., 2009),

large rivers in the USA (Schubert et al., 2007; Shukla and

Lettenmaier, 2011) and the Thur River in the northeastern

part of Switzerland (Fundel et al., 2013). The common result

of the above-mentioned studies is that the skill of the sea-

sonal forecasts made with global and regional hydrological

models is reasonable for lead times of 1–3 months (Shukla

and Lettenmaier, 2011; Wood et al., 2002) and these fore-

casting systems are all prone to large uncertainties as their

forecast skills mainly depend on the knowledge of initial hy-

drologic conditions and weather information during the fore-

cast period (Shukla et al., 2012; Yossef et al., 2013; Li et al.,

2009; Doblas-Reyes et al., 2009). In a recent study, Yossef et

al. (2013) used a global monthly hydrological model to anal-

yse the relative contributions of initial conditions and mete-

orological forcing to the skill of seasonal streamflow fore-

casts. They included 78 stations in large basins in the world

including the River Rhine for forecasts with lead times up to

6 months. They found that improvements in seasonal hydro-

logical forecasts in the Rhine depend on better meteorolog-

ical forecasts, which underlines the importance of meteoro-

logical forcing quality particularly for forecasts beyond lead

times of 1–2 months.

Most of the previous River Rhine studies use only one

hydrological model, e.g. PREVAH (Fundel et al., 2013) or

PCR-GLOBWB (Yossef et al., 2013), to assess the value of

ensemble meteorological forcing, whereas in this study, we

compare three hydrological models with different structures

varying from data-driven to conceptual models. The two ob-

jectives of this study are to contrast data-driven and con-

ceptual modelling approaches and to assess the effect of en-

semble seasonal forecasted precipitation and potential evap-

otranspiration on low-flow forecast quality and skill scores.

By comparing three models with different model structures

we address the issue of model structure uncertainty, whereas

the latter objective reflects the benefit of ensemble seasonal

forecasts. Moreover, the effect of initial model conditions is

partly addressed using climate mean data in one of the cases.

The analysis complements recent efforts to analyse the ef-

fects of ensemble weather forecasts on low-flow forecasts
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Table 1. Overview of observed data used.

Variable Name Number of Period Annual Time Spatial Source

stations/ range step resolution

sub-basins (mm) (days)

Q Discharge 1 1951–2006 163–550 1 Point GRDC

P Precipitation 26 1951–2006 570–1174 1 Basin average BfG

PET Potential evapotranspiration 26 1951–2006 512–685 1 Basin average BfG

h Mean altitude 26 – – – Basin average BfG

Table 2. Overview of ensemble seasonal meteorological forecast data.

Data Spatial Ensemble Period Time Lead

resolution size step time

(days) (days)

Forecasted P 0.25× 0.25◦ 39+ 1 control 2002–2005 1 1–90

Forecasted PET 0.25× 0.25◦ 39+ 1 control 2002–2005 1 1–90

with a lead time of 10 days using two conceptual models

(Demirel et al., 2013b), by studying the effects of seasonal

ensemble weather forecasts on 90-day low-flow forecasts us-

ing not only conceptual models but also data-driven models.

The outline of the paper is as follows. The study area

and data are presented in Sect. 2. Section 3 describes the

model structures, their calibration and validation set-ups and

the methods employed to estimate the different attributes of

the forecast quality. The results are presented in Sect. 4 and

discussed in Sect. 5, and the conclusions are summarized in

Sect. 6.

2 Study area and data

2.1 Study area

The study area is the Moselle River basin, the largest sub-

basin of the Rhine River basin. The Moselle River has

a length of 545 km. The river basin has a surface area

of approximately 27 262 km2. The altitude in the basin

varies from 59 to 1326 m, with a mean altitude of 340 m

(Demirel et al., 2013a). There are 26 sub-basins with sur-

face areas varying from 102 to 3353 km2. Approximately

410 mm (∼ 130 m3 s−1) discharge is annually generated in

the Moselle Basin (Demirel et al., 2013b). The outlet dis-

charge at Cochem varies from 14 m3 s−1 in dry summers to

a maximum of 4000 m3 s−1 during winter floods.

The Moselle River has been heavily regulated by dams,

power plants, weirs and locks. There are around 12 hy-

dropower plants between Koblenz and Trier producing en-

ergy since the 1960s (Bormann, 2010). Moreover, there are

12 locks only on the German part of the river (Bormann et

al., 2011).

2.2 Data

2.2.1 Observed data

Observed daily data on precipitation (P ), potential evapo-

transpiration (PET) and the mean altitudes (h) of the 26 sub-

basins have been provided by the German Federal Institute

of Hydrology (BfG) in Koblenz, Germany (Table 1). PET

is estimated using the Penman–Wendling equation (ATV-

DVWK, 2002) and both variables have been spatially av-

eraged by BfG over 26 Moselle sub-basins using areal

weights. Observed data from 12 meteorological stations in

the Moselle Basin (as part of 49 stations over the Rhine

Basin), mainly provided by the CHR, the DWD and Metéo

France, are used to estimate the basin-averaged input data

(Görgen et al., 2010). Observed daily discharge (Q) data

at Cochem (station #6336050) are provided by the Global

Runoff Data Centre (GRDC), Koblenz. The daily observed

data (P , PET andQ) are available for the period 1951–2006.

2.2.2 Ensemble seasonal meteorological forecast data

The ensemble seasonal meteorological forecast data, com-

prising 40 members, are obtained from the European Centre

for Medium-Range Weather Forecasts (ECMWF) seasonal

forecasting archive and retrieval system, i.e. MARS system 3

(ECMWF, 2012). This data set contains regular 0.25× 0.25◦

latitude–longitude grids and each ensemble member is com-

puted for a lead time of 184 days using perturbed initial

conditions and model physics (Table 2). We estimated the

PET forecasts using the Penman–Wendling equation requir-

ing forecasted surface solar radiation and temperature at 2 m

above the surface, and the altitude of the sub-basin (ATV-

DVWK, 2002). The PET estimation is consistent with the

observed PET estimation carried out by BfG (ATV-DVWK,
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Figure 1. Schematization of the three models. PET is potential evapotranspiration, P is precipitation, Q is discharge and t is the time (day).

2002). The grid-based P and PET ensemble forecast data are

firstly interpolated over 26 Moselle sub-basins using areal

weights. These sub-basin averaged data are then aggregated

to the Moselle basin level.

3 Methodology

3.1 Overview of model structures and forecast scheme

The three hydrological models (GR4J, HBV and ANN-E)

are briefly described in Sects. 3.1.1–3.1.3. Figure 1 shows

the simplified model structures. The calibration and valida-

tion of the models is described in Sect. 3.1.4. Five cases with

different combinations of ensemble meteorological forecast

input and climate mean input are introduced in Sect. 3.1.5.

We provide a detailed description for each parameter of the

three models in Sect. 4.1.

3.1.1 GR4J

The GR4J model (Génie Rural à 4 paramètres Journalier)

is used as it has a parsimonious structure with only four

parameters. The model has been tested over hundreds of

basins worldwide, with a broad range of climatic conditions

from tropical to temperate and semi-arid basins (Perrin et al.,

2003). GR4J is a conceptual model and the required model

inputs are daily time series of P and PET (Table 3). All four

parameters (Fig. 1a) are used to calibrate the model. The up-

per and lower limits of the parameters are selected based on

previous works (Perrin et al., 2003; Pushpalatha et al., 2011;

Tian et al., 2014).

3.1.2 HBV

The HBV conceptual model (Hydrologiska Byråns Vatten-

balansavdelning) was developed by the Swedish Meteoro-

logical and Hydrological Institute (SMHI) in the early 1970s

(Lindström et al., 1997). The HBV model consists of four

subroutines: a precipitation and snow accumulation and melt

routine, a soil moisture accounting routine and two runoff

generation routines. The required input data are daily P and

PET. The snow routine and daily temperature data are not

used in this study as the Moselle basin is a rain-fed basin.

Eight parameters (see Fig. 1b) in the HBV model are cali-

brated (Engeland et al., 2010; Van den Tillaart et al., 2013;

Tian et al., 2014). The eight parameters are selected for cal-

ibration and the parameter ranges are selected based on pre-

vious works (Booij, 2005; Eberle, 2005; Tian et al., 2014).

3.1.3 ANN-E

An Artificial Neural Network (ANN) is a data-driven model

inspired by functional units (neurons) of the human brain

(Elshorbagy et al., 2010). A neural network is a universal ap-

proximator capable of learning the patterns and relation be-

tween outputs and inputs from historical data and applying it

for extrapolation (Govindaraju and Rao, 2000). A three-layer

feed-forward neural network (FNNs) is the most widely pre-

ferred model architecture for prediction and forecasting of

hydrological variables (Adamowski et al., 2012; Shamseldin,

1997; Kalra et al., 2013). Each of these three layers has an

important role in processing the information. The first layer

receives the inputs and multiplies them with a weight (adds a
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Table 3. Model descriptions. PET is potential evapotranspiration, P is precipitation and Q is discharge.

Model type Input Temporal Lag between Model Model

Conceptual Data-driven resolution forecast issue time lead time

of input day and final step (days)

day of

temporal

averaging

(days)

| GR4J | P : ensemble Daily P P : 0 Daily 1 to 90

PET: ensemble Daily PET PET: 0

Q: state update Q: 1

| HBV | P : ensemble Daily P P : 0 Daily 1 to 90

PET: ensemble Daily PET PET: 0

Q: state update Q: 1

| ANN-E | P : ensemble Daily P P : 0 Daily 1 to 90

PET: ensemble Daily PET PET: 0

Q: state update Daily Q Q: 1

bias if necessary) before delivering them to each of the hid-

den neurons in the next layer (Gaume and Gosset, 2003). The

weights determine the strength of the connections. The num-

ber of nodes in this layer corresponds to the number of in-

puts. The second layer, the hidden layer, consists of an acti-

vation function (also known as transfer function) which non-

linearly maps the input data to output target values. In other

words, this layer is the learning element of the network which

simulates the relationship between inputs and outputs of the

model. The third layer, the output layer, gathers the processed

data from the hidden layer and delivers the final output of the

network.

A hidden neuron is the processing element with n inputs

(x1, x2, x3, . . . , xn), and one output y using

y = f (x1,x2,x3, . . .,xn)= logsig

[(
n∑
i=1

xiwi

)
+ b

]
, (1)

where wi are the weights, b is the bias and logsig is the log-

arithmic sigmoid activation function. We tested the tansig

and logsig activation functions and the latter was selected for

this study as it gave better results for low flows. ANN model

structures are determined based on the forecast objective. In

this study, we used a conceptual type ANN model structure,

ANN-Ensemble (ANN-E), which requires daily P , PET and

historical Q as input. Observed discharge on the forecast is-

sue day is used to update the model states (Table 3). In other

words, the ANN-E model receives Qobs(t) as input on the

time step t when the forecast is issued, and then receives the

streamflow forecast of the previous time step as input for lead

times larger than 1 day. Further, forecasted Q for time step

t + j is used as input to forecast Q at t + j + 1.

This is a 1 day memory which also exists in the conceptual

models, i.e. GR4J and HBV (Fig. 1). The ANN-E is assumed

to be comparable with the conceptual models with similar

model structures. The determination of the optimal number

of hidden neurons in the second layer is an important issue in

the development of ANN models. Three common approaches

are ad hoc (also known as trial and error), global and stepwise

(Kasiviswanathan et al., 2013). We used a global approach

(i.e. Genetic Algorithm) to avoid local minima (De Vos and

Rientjes, 2008) and tested the performance of the networks

with one, two and three hidden neurons corresponding to a

number of parameters (i.e. number of weights and biases)

of 6, 11 and 16, respectively. Based on the parsimonious

principle, testing ANNs only up to three hidden neurons is

assumed to be enough as the number of parameters increases

exponentially for every additional hidden neuron.

3.1.4 Calibration and validation of models

A global optimization method, i.e. Genetic Algorithm (GA)

(De Vos and Rientjes, 2008), and historical Moselle low

flows for the period from 1971–2001 are used to calibrate

the models used in this study. The 30-year calibration period

is carefully selected as the first low-flow forecast is issued

on 1 January 2002. The first 3 years are used as warm-up

period for the hydrological model. For all GA simulations,

we use 100 as population size, 5 as reproduction elite count

size, 0.7 as crossover fraction, 2000 as maximum number of

iterations and 5000 as the maximum number of function eval-

uations based on the studies by De Vos and Rientjes (2008)

and Kasiviswanathan et al. (2013). The evolution starts from

the population of 100 randomly generated individuals. The

population in each iteration is called a generation and the

fitness of every individual in the population is evaluated us-

ing the objective function. The best 70 % of the population

www.hydrol-earth-syst-sci.net/19/275/2015/ Hydrol. Earth Syst. Sci., 19, 275–291, 2015



280 M. C. Demirel et al.: The skill of seasonal ensemble low-flow forecasts in the Moselle River

(indicated as crossover fraction) survives in the process of

2000 iterations.

The validation period spans 1951–1970. The definition

of low flows, i.e. discharges below the Q75 threshold of

∼ 113 m3 s−1, is based on previous work by Demirel et

al. (2013a). Prior parameter ranges and deterministic equa-

tions used for dynamic model state updates of the conceptual

models based on observed discharges on the forecast issue

day are based on the study by Demirel et al. (2013b). In this

study, we use a hybrid Mean Absolute Error (MAE) based

on only low flows (MAElow) and inverse discharge values

(MAEinverse) as objective function (see Eq. 4):

Mean absolute errorlow :
1

m

m∑
j=1

|Qsim(j)−Qobs(j)| , (2)

where Qobs and Qsim are the observed and simulated values

for the j th observed low-flow day (i.e.Qobs<Q75) and m is

the total number of low-flow days:

Mean absolute errorinverse :
1

n

n∑
i=1

∣∣∣∣ 1

Qsim(i)+ ε
−

1

Qobs(i)+ ε

∣∣∣∣, (3)

where n is the total number of days (i.e. m<n), and ε is

1 % of the mean observed discharge to avoid infinity during

zero discharge days (see Pushpalatha et al., 2012). The hy-

brid Mean Absolute Error is defined as

MAEhybrid =MAElow+MAEinverse. (4)

The MAElow and MAEinverse were not normalized to calcu-

late MAEhybrid metric. It should be noted that we did not fully

neglect the high and intermediate flows using MAEinverse,

whereas only low-flow periods are considered in MAElow.

This is one of the advantages of using the MAEhybrid metric

and also avoids redundancy.

3.1.5 Model storage update procedure for HBV and

GR4J models

The storages in the two conceptual models are updated based

on the observed discharge on the forecast issue day. In our

previous study (Demirel et al., 2013b), we derived empirical

relations between the simulated discharge and the fast runoff

for each model to divide the observed discharge between the

fast and slow runoff components:

k_GR4J=
Qd

Qr +Qd
(5)

k_HBV=
Qf

Qf +Qs
. (6)

The Qf and Qs in the HBV model, and Qr and Qd in the

GR4J model are estimated using the fractions above and the

observed discharge value on the forecast issue day. The rout-

ing storage (R) in the GR4J model is updated for a given

value of the X3 parameter using Eq. (7). Moreover, the sur-

face water (SW) and groundwater (GW) storages in the HBV

model are updated for given values of KF, ALFA and KS pa-

rameters using Eqs. (8) and (9):

Qr = R

1−

[
1+

(
R

X3

)4
]−1/4

 (7)

SW=

(
Qf

KF

)( 1
(1+ALFA)

)
(8)

GW=
Qs

KS
. (9)

The remaining two storages S (in GR4J) and SM (in HBV)

are updated using the calibrated model run until the forecast

issue day (i.e. top-down approach).

3.1.6 Case description

In this study, three hydrological models are used for the sea-

sonal forecasts. Five ensemble meteorological forecast input

cases for ANN-E, GR4J and HBV models are compared:

(1) ensemble P and PET forecasts, (2) ensemble P forecasts

and observed climate mean PET, (3) observed climate mean

P and ensemble PET forecasts, (4) observed climate mean

P and PET, and (5) zero P and ensemble PET forecasts (Ta-

ble 4). P and PET forecasts are joint forecasts in our mod-

elling practice. For example, if the first ensemble member is

called from P then the first member from PET is also called

to force the hydrological model.

Cases 1–4 are the different possible combinations of en-

semble and climate mean meteorological forcing. Case 5 is

analysed to determine to which extent the precipitation fore-

cast in a very dry year (2003) is important for seasonal low-

flow forecasts. It should be noted that all available historical

data (1951–2006) were used to estimate the climate mean.

For example the climate mean for January 1st is estimated

by the average of 55 January 1st values in the available pe-

riod (1951–2006).

3.2 Forecast skill scores

Three probabilistic forecast skill scores (Brier Skill Score,

reliability diagram, hit and false alarm rates) and one deter-

ministic forecast skill score (Mean Forecast Score) are used

to analyse the results of low-flow forecasts with lead times of

1–90 days. Forecasts for each day in the test period (2002–

2005) are used to estimate these scores. The Mean Fore-

cast Score focusing on low flows is introduced in this study,

whereas the other three scores have been often used in mete-

orology (WMO, 2012) and flood hydrology (Velázquez et al.,

2010; Renner et al., 2009; Thirel et al., 2008). For the three

models, i.e. GR4J, HBV and ANN-E, the forecast probability

for each forecast day is estimated as the ratio of the number

of ensemble members non-exceeding the preselected thresh-
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Table 4. Details of the five input cases.

Case Precipitation The number Potential The number

(P ) of ensemble evapotranspiration of ensemble

members (PET) members

(P ) (PET)

1 Ensemble forecast 40 Ensemble forecast 40

2 Ensemble forecast 40 Climate mean 1

3 Climate mean 1 Ensemble forecast 40

4 Climate mean 1 Climate mean 1

5 Zero 0 Ensemble forecast 40

Table 5. Contingency table for the assessment of low-flow events based on the Q75.

Observed Not observed

Forecasted hit: the event forecasted to false alarm: event forecasted

occur and did occur to occur, but did not occur

Not forecasted miss: the event forecasted not correct negative: event

to occur, but did occur forecasted not to occur and

did not occur

olds (here Q75) and the total number of ensemble members

(i.e. 40 members) for that forecast day.

3.2.1 Brier skill score (BSS)

The Brier Skill Score (BSS) (Wilks, 1995) is often used

in hydrology to evaluate the quality of probabilistic fore-

casts (Devineni et al., 2008; Hartmann et al., 2002; Jaun and

Ahrens, 2009; Roulin, 2007; Towler et al., 2013):

Brier skill score : 1−
BSforecast

BSclimatology

, (10)

where the BSforecast is the Brier Score (BS) for the forecast,

defined as

Brier score :
1

n

n∑
t=1

(Ft −Ot )
2, (11)

where Ft refers to the forecast probability, Ot refers to the

observed probability (Ot = 1 if the observed flow is below

the low-flow threshold, 0 otherwise), and n is the sample

size. BSclimatology is the BS for the climatology, which is also

calculated from Eq. (11) for every year using climatologi-

cal probabilities. BSS values range from minus infinity to 1

(perfect forecast). Negative values indicate that the forecast

is less accurate than the climatology and positive values in-

dicate more skill compared to the climatology.

3.2.2 Reliability diagram

The reliability diagram is used to evaluate the performance

of probabilistic forecasts of selected events, i.e. low flows. A

reliability diagram represents the observed relative frequency

as a function of forecasted probability and the 1 : 1 diago-

nal shows the perfect reliability line (Velázquez et al., 2010;

Olsson and Lindström, 2008). This comparison is important

as reliability is one of the three properties of a hydrological

forecast (WMO, 2012). A reliability diagram shows the por-

tion of observed data inside preselected forecast intervals.

In this study, exceedance probabilities of 50, 75, 85, 95 and

99 % are chosen as thresholds to categorize the discharges

from mean flows to extreme low flows. The forecasted prob-

abilities are then divided into bins of probability categories;

here, five bins (categories) are chosen: 0–20, 20–40, 40–60,

60–80 and 80–100 %. The observed frequency for each day

is chosen to be 1 if the observed discharge is below the low-

flow threshold, or 0, if not.

3.2.3 Hit and false alarm rates

We used hit and false alarm rates to assess the effect of en-

sembles on low-flow forecasts for varying lead times. The hit

and false alarm rates indicate respectively the proportion of

events for which a correct warning was issued, and the pro-

portion of non-events for which a false warning was issued

by the forecast model. These two simple rates can be easily

calculated from contingency tables (Table 5) using Eqs. (12)

and (13). These scores are often used for evaluating flood

forecasts (Martina et al., 2006); however, they can also be

used to estimate the utility of low-flow forecasts as they indi-

cate the model’s ability to correctly forecast the occurrence

or non-occurrence of preselected events (i.e.Q75 low flows).

There are four cases in a contingency table as shown in Ta-

ble 5:
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Table 6. Parameter ranges and calibrated values of the pre-selected three models.

Parameter Unit Range Calibrated Description

value

GR4J model

X1 [mm] 10–2000 461.4 Capacity of the production store

X2 [mm] −8 to +6 −0.3 Groundwater exchange coefficient

X3 [mm] 10–500 80.8 One day ahead capacity of the routing store

X4 [d] 0–4 2.2 Time base of the unit hydrograph

HBV model

FC [mm] 200–800 285.1 Maximum soil moisture capacity

LP [−] 0.1–1 0.7 Soil moisture threshold for reduction of evapotranspiration

BETA [−] 1–6 2.2 Shape coefficient

CFLUX [mm d−1
] 0.1–1 1.0 Maximum capillary flow from upper response box to soil moisture zone

ALFA [−] 0.1–3 0.4 Measure for non-linearity of low flow in quick runoff reservoir

KF [d−1
] 0.005–0.5 0.01 Recession coefficient for quick flow reservoir

KS [d−1
] 0.0005–0.5 0.01 Recession coefficient for base flow reservoir

PERC [mm d−1
] 0.3–7 0.6 Maximum flow from upper to lower response box

ANN-E model

W1 [−] −10 to +10 −2.3 Weight of connection between 1st input node (P ) and hidden neuron

W2 [−] −10 to +10 0.03 Weight of connection between 2nd input node (PET) and hidden neuron

W3 [−] −10 to +10 −0.02 Weight of connection between 3rd input node (Q(t − 1)) and hidden neuron

W4 [−] −10 to +10 3.7 Weight of connection between hidden neuron and output node

B1 [−] −10 to +10 0.02 Bias value in hidden layer

B2 [−] −10 to +10 1.1 Bias value in output layer

hit rate=
hits

(hits+misses)
(12)

false alarm rate=
false alarms

(correct negatives+ false alarms)
. (13)

3.2.4 Mean forecast score (MFS)

The mean forecast score (MFS) is a new skill score which

can be derived from either probabilistic or deterministic fore-

casts. The probabilities are calculated for the days when low

flow occurred. In this study we used a deterministic approach

for calculating the observed frequency for all three models.

For all three models, ensembles are used for estimating fore-

cast probabilities. The score is calculated as below only for

deterministic observed low flows:

Mean forecast score :
1

m

m∑
j=1

Fj (14)

where Fj is the forecast probability for the j th observed low-

flow day (i.e. Oj ≤Q75) and m is the total number of low-

flow days. The probability of a deterministic forecast can be 0

or 1, whereas it varies from 0 to 1 for ensemble members. For

instance, if 23 of the 40 ensemble forecast members indicate

low flows for the j th low-flow day then Fj = 23/40. It should

be noted that this score is not limited to low flows as it has a

flexible forecast probability definition which can be adapted

to any type of discharge. MFS values range from zero to 1

(perfect forecast).

4 Results

4.1 Calibration and validation

Table 6 shows the parameter ranges and the best-performing

parameter sets of the three models. The GR4J and HBV mod-

els have both well-defined model structures; therefore, their

calibration was more straightforward than the calibration of

the ANN models. Calibration of the ANN-E model was done

in two steps. First, the number of hidden neurons was deter-

mined by testing the performance of the ANN-E model with

one, two and three hidden neurons.

Second, daily P , PET and Q are used as three inputs for

the tested ANN-E model with one, two and three hidden neu-

rons due to the fact that these inputs are comparable with the

inputs of the GR4J and HBV models. Figure 2a shows that

the performance of the ANN-E model does not improve with

additional hidden neurons. Based on the performance in the

validation period, one hidden neuron is selected. GR4J and

HBV are also calibrated. The results of the three models used

in this study are presented in Fig. 2b.
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Figure 2. Calibration and validation results of (a) the ANN-E model with one, two and three hidden neurons and (b) the three models used

in this study. The same calibration (1971–2001) and validation (1951–1970) periods are used for both plots.

Figure 3. Range (shown as grey shade) of low-flow forecasts in (a) 2002 (the wettest year of the test period with 101 low-flow days) and

(b) 2003 (the driest year of the test period with 192 low-flow days) for a lead time of 90 days using ensemble P and PET as input for GR4J,

HBV and ANN-E models (case 1 – 2002 and 2003). The gaps in the figures indicate non-low-flow days (i.e. censored).

The performances of GR4J and HBV are similar in the

calibration period, whereas HBV performs better in the vali-

dation period (Fig. 2b). This is not surprising, since HBV has

a more sophisticated model structure than GR4J.

It should be noted that the effect of anthropogenic activ-

ities (e.g. flood preventive regulations and urbanization) on

the alteration of flow magnitude and dynamics is not obvious,

as we found weak positive trends in all P , PET and Q series

(p< 0.025 for the three variables using the Mann–Kendall

method) which might be caused by climatic changes. Other

studies reported that the trends in flood stages in Moselle

River were not significant (Bormann et al., 2011).

4.2 Effect of ensembles on low-flow forecasts for 90-day

lead time

The effect of ensemble P and PET on GR4J, HBV and ANN-

E is presented as a range bounded by the lowest and highest

forecast values in Fig. 3a and b. The 2 years, i.e. 2002 and

2003, are carefully selected as they represent a relatively wet

year and a very dry year respectively. Figure 3a shows that

there are significant differences between the three model re-

sults. The 90-day-ahead low flows in 2002 are mostly over-

predicted by the ANN-E model, whereas GR4J and HBV

over-predict low flows observed after August. The over-
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Figure 4. Range (shown as grey shade) of low-flow forecasts in 2003 for a lead time of 90 days using (a) ensemble P and climate mean PET

(case 2) and (b) climate mean P and ensemble PET as input for GR4J, HBV and ANN-E models (case 3). The gaps in the figures indicate

non-low-flow days (i.e. censored).

prediction of low flows is more pronounced for GR4J than

for the other three models. The over-prediction of low flows

by ANN-E is mostly at the same level. This less sensitive be-

haviour of ANN-E to the forecasted ensemble inputs shows

the effect of the logarithmic sigmoid transfer function on the

results. Due to the nature of this algorithm, input is rescaled

to a small interval [0, 1] and the gradient of the sigmoid func-

tion at large values approximates zero (Wang et al., 2006).

Further, ANN-E is also not sensitive to the initial model con-

ditions updated on every forecast issue day. The less pro-

nounced over-prediction of low flows by HBV compared to

GR4J may indicate that the slow responding groundwater

storage in HBV is less sensitive to different forecasted en-

semble P and PET inputs (Demirel et al., 2013b).

The results for 2003 are slightly different than those for

2002. As can be seen from Fig. 3b the number of low-flow

days has increased in the dry year, i.e. 2003, and the low

flows between August and November are not captured by

any of the 40-ensemble forecasts using ANN-E. The most

striking result in Fig. 3b is that the low flows observed in

the period between April and May are not captured by any

of the three models, i.e. GR4J, HBV and ANN-E. The poor

performance of the models during the spring period can be

explained by the high precipitation amount in this period.

The poor simulation of high flows in the preceding winter

months can have an effect on the forecasts too. The 90-day

low flows between October and November are better fore-

casted by GR4J and HBV than the ANN-E model. The two

hydrological models used in this study have well-defined

surface- and groundwater components. Therefore, they react

to the weather inputs in a physically meaningful way. How-

ever, in black box models, the step functions (transfer func-

tions or activation functions) may affect the model behaviour.

The ANN model will then react to a certain range of inputs

based on the objective function. This feature of ANN is the

main reason for the erratic behaviour in Fig. 4b and the small

(and uniform) uncertainty range in the figures (e.g. Fig. 3).

For the purpose of determining to which extent ensemble

P and PET inputs and different initial conditions affect 90-

day low-flow forecasts, we ran the models with different in-

put combinations such as ensemble P or PET and climate

mean P or PET and zero precipitation. Figure 4a shows the

forecasts using ensemble P and climate mean PET as input

for three models. The picture is very similar to Fig. 3b as

most of the observed low flows fall within the constructed

forecast range by GR4J and HBV. The forecasts issued by

GR4J are better than those issued by the other two models.

However, the range of forecasts using GR4J is larger than

for the other models showing the sensitivity of the model for

different precipitation inputs. It is obvious that most of the

range in all forecasts is caused by uncertainties originating

from ensemble precipitation input.

Figure 4b shows the forecasts using climate mean P and

ensemble PET as input for three models, i.e. GR4J, HBV and

ANN-E. Interestingly, only GR4J could capture the 90-day

low flows between July and November using climate mean P
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Figure 5. Low-flow forecasts in 2003 for a lead time of 90 days using (a) both climate mean P and PET (case 4) and (b) zero P and ensemble

PET (case 5) as input for GR4J, HBV and ANN-E models. The gaps in the figures indicate non-low-flow days (i.e. censored).

and ensemble PET showing the ability of the model to handle

the excessive rainfall. None of the low flows were captured

by HBV, whereas very few low-flow events were captured by

ANN-E (Fig. 4b). The precipitation information is crucial for

the conceptual models to forecast low flows for a lead time of

90 days. The narrow uncertainty band indicates that the effect

of the PET ensemble on the forecasts is less pronounced as

compared to the effect of the P ensemble.

Figure 5a shows the forecasts using climate mean P and

PET as input for three models. The results are presented

by point values without a range since only one determinis-

tic forecast is issued. There are significant differences in the

results of the three models. For instance, all 90-day-ahead

low flows in 2003 are over-predicted by HBV, whereas the

over-prediction of low flows is less pronounced for ANN-

E. It is remarkable that GR4J can forecast a very dry year

accurately using the climate mean. The low values of the cal-

ibrated maximum soil moisture capacity and percolation pa-

rameters of HBV (FC and PERC) can be the main reason for

over-prediction of all low flows as the interactions of param-

eters with climate mean P input can result in higher model

outputs.

We also assessed the seasonal forecasts using zero P and

ensemble PET as inputs for three models (Fig. 5b). Not sur-

prisingly, both GR4J and HBV under-predicted most of the

low flows when they are run without precipitation input. The

results of case 5 confirm that the P input is crucial for im-

proving low-flow forecasts although obviously less precipi-

tation is usually observed in a low-flow period compared to

other periods.

Figure 6 shows the performance of the three models in

the test period using perfect P and PET forecasts as input.

This is an idealistic case showing that GR4J model performs

better than the other two models. It is interesting to note that

the ANN-E model does not produce constant predictions as

in the previous figures, showing the ability of this black box

model to perform comparable to the conceptual models when

configured and trained properly.

We also show the minimum and maximum prediction er-

rors for each case in Table 7. There are large differences in

cases 1 and 2 as compared to the other cases. It is also obvi-

ous that the uncertainty range is larger in case 1 than in case 2

for the conceptual models. This is also what we see in Figs. 3

and 4 above.

4.3 Effect of ensembles on low-flow forecast skill scores

Figure 7 compares the three models and the effect of ensem-

ble P and PET on the skill of probabilistic low-flow fore-

casts with varying lead times. In this figure, four different

skill scores are used to present the results of probabilistic

low-flow forecasts issued by GR4J, HBV and ANN-E. From

an operational point of view, the main purpose of investi-

gating the effect of ensembles and model initial conditions

on ensemble low-flow forecasts with varying lead times is to

improve the forecast skills (e.g. hit rate, reliability, BSS and

MFS) and to reduce false alarms and misses. From Fig. 7

we can clearly see that the results of GR4J show the lowest

BSS, MFS and hit rate. The false alarm rate of forecasts us-

ing GR4J is also the lowest compared to those using other

models. The decrease in false alarm rates after a lead time of

20 days shows the importance of initial condition uncertainty

for short lead time forecasts. The limit is around 20 days for

ANN-E and shorter for the other two models. When the fore-

cast is issued on day (t), the model states are updated us-
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Figure 6. Benchmark reference forecasts using the three models (GR4J, HBV and ANN-E) using observed P and PET (i.e. perfect forecasts).

Figure 7. Skill scores for forecasting low flows at different lead

times for three different hydrological models for the test period

2002–2005. Note that all forecasts (including high- and low-flow

time steps) are used to estimate these skill scores.

ing the observed discharge on that day (t). For GR4J and

HBV we used the deterministic state update procedure de-

scribed in Sect. 3.1.5. However, the models probably spin-up

after some days and the results for false alarm rate are im-

proved. For longer lead times the error is better handled by

the models. We further analysed the forecasted meteorologi-

cal forcing data (P and PET) to see if there is any difference

between the short lead time (∼ 20 days) and long lead time

(e.g. 90 days). This is done for three different lead times for

each model when the false alarm rate was highest (i.e. 12,

15 and 21 days based on the false alarm rates of GR4J, HBV

and ANN-E, respectively). We compared the boxplots from

these problematic lead times with the 90-day lead time (not

shown here but available in the review reports). It is interest-

ing to note that the ranges for P and PET are larger at 90-day

lead time as compared to shorter lead times. However, the ob-

served P and PET values (i.e. perfect forecasts) are covered

by the large ranges resulting in higher hit rates (i.e. lower

false alarm rates). In other words, for short lead times, 12,

15 and 21 days in particular, the ranges for P and PET are

smaller than those for the 90-day lead time but the observed

P and PET values are usually missed, causing higher false

alarm rates in the results.

It appears from the results that ANN-E and HBV show a

comparable skill in forecasting low flows up to a lead time of

90 days.

Figure 8 compares the reliability of probabilistic 90-day

low-flow forecasts below different thresholds (i.e. Q75, Q90

and Q95) using ensemble P and PET as input for three mod-

els. The figure shows that the Q75 and Q90 low-flow fore-

casts issued by the HBV model are more reliable compared

to the other models. Moreover, all three models under-predict

most of the forecast intervals. It appears from Fig. 8c that

very critical low flows (i.e. Q99) are under-predicted by the

GR4J model.
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Table 7. Minimum and maximum prediction errors for low-flow forecasts for a lead time of 90 days during the test period 2002–2005.

Model Minimum, median and maximum MAE (m3 s−1)

Case 1 Case 2 Case 3 Case 4 Case 5

HBV [23 101 785] [23 72 600] [108 119 135] [105 105 105] [57 57 57]

GR4J [33 122 906] [36 75 646] [46 61 111] [44 44 44] [55 58 59]

ANN-E [17 94 227] [18 72 221] [65 73 80] [65 65 65] [16 16 17]

Figure 8. Reliability diagram for different low-flow forecasts. (a) Low flows below Q75 threshold (584 observed events in the test period

2002–2005). (b) Low flows below Q90 threshold (250 observed events). (c) Low flows below Q99 threshold (20 observed events). The

forecasts are issued for a lead time of 90 days for the test period 2002–2005 using ensemble P and PET as input for GR4J, HBV and ANN-E

models.

5 Discussion

To compare data-driven and conceptual modelling ap-

proaches and to evaluate the effects of seasonal meteorolog-

ical forecasts on low-flow forecasts, 40-member ensembles

of ECMWF seasonal meteorological forecasts were used as

input for three low-flow forecast models.

These models were calibrated using a hybrid low-flow ob-

jective function. Although combining two metrics offered a

selective evaluation of low flows, we have noted an impor-

tant caveat using the second component of the hybrid metric

as it is less sensitive as compared to the first part of the hy-

brid metric resulting in higher (optimistic) values for most

cases. The different units had no effect on our calibration re-

sults as the ultimate calibration target value is zero (i.e. unit

independent). Other studies also combined different metrics

with different units (Nash–Sutcliffe, RMSE,R2 and NumSC,

i.e. the number of sign changes in the errors) into one objec-

tive function (Hamlet et al., 2013). However, the modellers

should carefully use the hybrid function introduced in this

study, in particular when comparing different model results.

Plotting the two parts of this hybrid function as a Pareto front

can lead to a clearer picture than simply summing the two

metrics.

In this study, different input combinations were compared

to distinguish between the effects of ensemble P and PET

and model initial conditions on 90-day low-flow forecasts.

The models could reasonably forecast low flows when en-

semble P was introduced into the models. This result is in

line with that of Shukla and Lettenmaier (2011) who found

that seasonal meteorological forecasts have a greater influ-

ence than initial model conditions on the seasonal hydrologi-

cal forecast skills. Moreover, our analyses show that the bet-

ter forecast performance for longer lead times is an obvious

artefact since the higher hit rates are the result of more uncer-

tain (larger range) forecasts. The probabilistic skill scores fo-

cuses on the forecasts; the uncertainty in the meteorological

forcing data should be carefully scrutinized using different

quantitative screening methods, e.g. boxplots.

Two other related studies also showed that the effect of a

large spread in ensemble seasonal meteorological forecasts

is larger than the effect of initial conditions on hydrological

forecasts with lead times longer than 1–2 months (Li et al.,

2009; Yossef et al., 2013). The encouraging results of low-

flow forecasts using ensemble seasonal precipitation fore-

casts for the hydrological models confirm the utility of sea-

sonal meteorological forcing for low-flow forecasts. Shukla

et al. (2012) also found useful forecast skills for both runoff

and soil moisture forecasting at seasonal lead times using the

medium-range weather forecasts.

In this study, we also assessed the effects of ensemble P

and PET on the skill scores of low-flow forecasts with vary-

ing lead times up to 90 days. In general, the four skill scores

show similar results. Not surprisingly, all models under-

predicted low flows without precipitation information (zero

P ). The most evident two patterns in these scores are that

first, the forecast skill drops sharply until a lead time of

30 days and second, the skill of probabilistic low-flow fore-

casts issued by GR4J is the lowest, whereas the skill of fore-

casts issued by ANN-E is the highest compared to the other

www.hydrol-earth-syst-sci.net/19/275/2015/ Hydrol. Earth Syst. Sci., 19, 275–291, 2015



288 M. C. Demirel et al.: The skill of seasonal ensemble low-flow forecasts in the Moselle River

two models. Further, our study showed that data-driven mod-

els can be good alternatives to conceptual models for issuing

seasonal low-flow forecasts (e.g. Fig. 6).

The two hydrological models used in this study have well-

defined surface- and groundwater components. Therefore,

they react to the weather inputs in a physically meaning-

ful way. However, in black box models, the step functions

(transfer functions or activation functions) may limit model

sensitivity after the training. The ANN model will then re-

act to a certain range of inputs based on the objective func-

tion. This feature of an ANN is the main reason for the

small (and uniform) uncertainty range in the figures. The

over-prediction of the models is closely related to the over-

prediction of the P by the ensembles. Low flows are usu-

ally over-predicted by the models for the entire period. How-

ever, there are under-predictions of low flows for some days

in November–December as well. Before June, none of the

low flows are captured by the ensemble members. The best-

performing period is the fall and the worst-performing period

is the spring period for the models. The poor performance of

the models during the spring period can be explained by the

high precipitation amount in this period. Since the first part

of the objective function used in this study solely focuses on

low flows, the high-flow period is less important in the cal-

ibration. The low flows occurring in the spring period are,

therefore, missed in the forecasts. The simulation of snow

cover during winter and snow melt during the spring can both

have effects on the forecasts too.

6 Conclusions

Three hydrological models have been compared regarding

their performance in the calibration, validation and forecast

periods, and the effect of seasonal meteorological forecasts

on the skill of low-flow forecasts has been assessed for vary-

ing lead times. The comparison of three different models help

us to contrast data-driven and conceptual models in low-flow

forecasts, whereas running the models with different input

combinations, e.g. climate mean precipitation and ensemble

potential evapotranspiration, help us to identify which input

source led to the largest range in the forecasts. A new hy-

brid low-flow objective function, comprising the mean ab-

solute error of low flows and the mean absolute error of

inverse discharges, is used for comparing low-flow simula-

tions, whereas the skill of the probabilistic seasonal low-flow

forecasts has been evaluated based on the ensemble forecast

range, Brier Skill Score, reliability, hit/false alarm rates and

Mean Forecast Score. The latter skill score (MFS) focusing

on low flows is firstly introduced in this study. In general our

results showed that:

– Based on the results of the calibration and validation,

one hidden neuron in ANN was found to be enough

for seasonal forecasts as additional hidden neurons did

not increase the simulation performance. The difference

between calibration and validation performances was

smallest for the HBV model, i.e. the most sophisticated

model used in this study.

– Based on the results of the comparison of different

model inputs for 2 years (i.e. 2002 and 2003), the largest

range for 90-day low-flow forecasts is found for the

GR4J model when using ensemble seasonal meteoro-

logical forecasts as input. Moreover, the uncertainty

arising from ensemble precipitation has a larger ef-

fect on seasonal low-flow forecasts than the effects of

ensemble potential evapotranspiration. All models are

prone to over-predict low flows using ensemble sea-

sonal meteorological forecasts. However, the precipita-

tion forecasts in the forecast period are crucial for im-

proving the low-flow forecasts. As expected, all three

models, i.e. GR4J, HBV and ANN-E, under-predicted

90-day-ahead low flows in 2003 without rainfall data.

– Based on the results of the comparison of forecast skills

with varying lead times, the false alarm rate of GR4J is

the lowest indicating the ability of the model of fore-

casting non-occurrence of low-flow days. The low-flow

forecasts issued by HBV are more reliable compared to

the other models. The hit rate of ANN-E is higher than

that of the two conceptual models used in this study.

Overall, the ANN-E and HBV models are the best-

performing two of the three models using ensemble P

and PET.

Further work should examine the effect of model parame-

ters and initial conditions on the seasonal low-flow forecasts

as the values of the maximum soil moisture and percolation

related parameters of conceptual models can result in over-

or under-prediction of low flows. The uncertainty increases

in seasonal meteorological forecasts can lead to better skill

scores as an artefact of large ranges in input. Therefore, the

quality of the model inputs should be assessed in addition

to the model outputs. It is noteworthy to mention that the

data-driven model developed in this study, i.e. ANN-E, can

be applied to other large river basins elsewhere in the world.

Surprisingly, ANN-E and HBV showed a similar skill for

seasonal forecasts, where a priori we expected that the two

conceptual models, GR4J and HBV, would show similar re-

sults up to a lead time of 90 days.
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