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Summary  
 
Freshwater is essential for life on earth, not only for basic human needs such as food, fibre and drinking water, 

but also for a healthy environment. In the near future, important challenges are to meet basic needs and to ensure 

that the extraction of water does not affect freshwater ecosystems. At present, humanity already uses 26 percent 

of the total terrestrial evapotranspiration and 54 percent of accessible runoff. If the world population increases 

further, there is concern in several regions and countries with limited water resources if food and fibre needs of 

future generations can be met. In general, global change is often considered in relation to climate change caused 

by emissions of greenhouse gasses, such as CO2 from fossil energy carriers. A shift towards CO2-neutral energy 

carriers, such as biomass, is heavily promoted. Nowadays, the production of biomass for food and fibre in 

agriculture requires about 86% of the worldwide freshwater use often competing with other uses such as urban 

supply and industrial activities. A shift from fossil energy towards energy from biomass puts additional pressure 

on freshwater resources.  

 

This report assesses the water footprint (WF) of bio-energy and other primary energy carriers. It focuses on 

primary energy carriers and expresses the WF as the amount of water consumed to produce a unit of energy 

(m3/GJ). The report observes large differences among the WF’s for specific types of primary energy carriers. For 

the fossil energy carriers, the WF increases in the following order: uranium (0.09 m3/GJ), natural gas (0.11 

m3/GJ), coal (0.16 m3/GJ), and finally crude oil (1.06 m3/GJ). Renewable energy carriers show large differences 

in their WF. The WF for wind energy is negligible, for solar thermal energy 0.30 m3/GJ, but for hydropower 22.3 

m3/GJ. For biomass, the WF depends on crop type, agricultural production system and climate. The WF of 

average biomass grown in the Netherlands is 24 m3/GJ, in the US 58 m3/GJ, in Brazil 61 m3/GJ, and in 

Zimbabwe 143 m3/GJ. Based on the average per capita energy use in western societies (100 GJ/capita/year), a 

mix from coal, crude oil, natural gas and uranium requires about 35 m3/capita/year. If the same amount of energy 

is generated through the growth of biomass in a high productive agricultural system, as applied in the 

Netherlands, the WF is 2420 m3. The WF of biomass is 70 to 400 times larger than the WF of the other primary 

energy carriers (excluding hydropower). The trend towards larger energy use in combination with increasing 

contribution of energy from biomass to supply will bring with it a need for more water. This causes competition 

with other claims, such as water for food crops. 

 

  

 





 

1. Introduction 
  

Freshwater is a prerequisite for life on earth. It is an essential natural resource for basic human needs such as 

food, drinking water and a healthy environment. In the coming decades, humanity will face important challenges, 

not only to meet these basic human needs but also to ensure that the extraction of water from rivers, streams, 

lakes and aquifers does not affect freshwater ecosystems to perform their ecological functions (Postel, 2000). 

Today, humanity already uses 26 percent of the total terrestrial evapotranspiration and 54 percent of accessible 

runoff (Postel et al., 1996). For a world population of 9.2 billion, as projected by the United Nations for 2050 

(UN, 2007), there are reasons for profound concern in several regions and countries with limited water resources 

if food and fibre needs of future generations can be met (Fischer et al., 2002; Postel, 2000; Rockström et al., 

2007; Vörösmarty et al., 2000).  

 

The scientific as well as the international political community consider global change often in relation to climate 

change. It is generally accepted that emissions of greenhouse gasses, such as CO2 from fossil energy carriers, are 

responsible for anthropogenic impacts on the climate system. A shift towards CO2-neutral energy carriers, such 

as biomass, is heavily promoted. Other advantages of these renewable energy sources are a decreased risk of 

energy supply insecurity, resource diversification, and the absence of depletion risks (De Vries et al., 2006). 

There are three categories of biomass for energy: (i) food crops, (ii) energy crops, and (iii) organic wastes 

(Minnesma and Hisschemöller, 2003). Food crops that are used for energy are, for example, sugar cane, 

providing ethanol, and rapeseed, providing biodiesel; typical energy crops are poplar and miscanthus, providing 

heat. The variety in organic wastes is enormous. Wastes are generated in agriculture (e.g. manure), industry or 

households.  

 

Nowadays, the production of biomass for food and fibre in agriculture requires about 86% of the worldwide 

freshwater use (Hoekstra and Chapagain, 2007). In many parts of the world, the use of water for agriculture 

competes with other uses such as urban supply and industrial activities (Falkenmark, 1989), while the aquatic 

environment shows signs of degradation and decline (Postel et al., 1996). An increase of demand for food in 

combination with a shift from fossil energy towards energy from biomass puts additional pressure on freshwater 

resources. For the future, hardly any new land is available so all production must come from the natural resource 

base currently available (FAO, 2003), requiring a process of sustainable intensification by increasing the 

efficiency of the use of land and water (Fresco, 2006).  

 

A tool that has been developed for the calculation of water needs for consumer products is the concept of the 

water footprint (WF). This tool has been introduced by Hoekstra (2003) and has been developed further by 

Hoekstra and Chapagain (2007, 2008). Those authors define the WF as the total annual volume of freshwater 

used to produce the goods and services related to consumption. So far, the tool has been used to assess the WF of 

food and cotton consumption. The objective of this report is to assess the water footprint per unit of energy 

(m3/GJ) of biomass and to compare these requirements with the water footprint of fossil energy carriers and other 

renewables (wind, solar energy and hydropower). Research questions are: (i) How much water is needed to 

provide energy from traditional fossil energy carriers?; (ii) What is the WF per unit of energy of food crops (e.g. 
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crops for sugar, starch and oil) and typical energy crops (e.g. trees and grasses); (iii) Does the location where 

biomass is produced influence the WF?; and (iv) How much additional water is needed if a shift occurs towards 

energy from biomass? First, the report estimates the WF of various types of biomass in m3 per unit of energy 

(GJ). Next, it estimates the WF of fossil energy carriers and hydropower based on data from literature and 

compares these results with results for biomass. This information can be used to evaluate the total WF of energy 

for different scenarios.  

 



 

2. System description 
  

2.1 Primary energy carriers 

 

Energy exists in many forms, such as kinetic energy, chemical energy, electricity or heat. Among these various 

forms, conversions occur. Biological photosynthesis, for example, converts solar photonic energy into chemical 

energy forming biomass. Many substances such as food or plastics contain energy (Verkerk et al., 1986). In 

energy analysis, however, a substance is considered an energy carrier if the substance is predominantly used as a 

source of energy (Blok, 2006). Before energy is available in an applicable form for human utilization, for 

example, for warming a house, cooking or lighting, energy passes a number of stages in a supply chain (Blok, 

2006). Energy carriers derive from energy sources, the non-renewable and the renewable energy sources. 

Primary energy carriers are defined as carriers directly derived from a natural source without any conversion 

process, while secondary energy carriers are the product of a conversion process (Blok, 2006).  

 

Throughout history, humans have used renewable energy from biomass, for example, wood for heating and 

cooking. The FAO (2006) defines biomass as material of organic origin, in non-fossilized form, such as 

agricultural crops and forestry products, agricultural and forestry wastes and by-products, manure, microbial 

biomass, and industrial and household organic waste. Biomass is applied for food (e.g. wheat), materials (e.g. 

cotton), or for energy (e.g. poplar). At present, biomass is the most important renewable primary energy carrier 

(Blok, 2006). Biomass is often converted into biofuels, renewable secondary energy carriers in solid, liquid or 

gaseous form. Examples are charcoal, ethanol, biodiesel, and biogas (Minnesma and Hisschemöller, 2003; Blok, 

2006). The energy derived from these fuels is termed bioenergy.  

 

For the assessment of the WF of energy, this report considered the currently most important primary energy 

carriers that derive from sources in the first stage of the energy supply chain: crude oil, coal, natural gas, 

uranium, electricity from hydropower, solar energy, and wind, and biomass. Processes that make primary energy 

carriers available, almost always require water in varying amounts. This section provides an overview of primary 

energy carriers showing the processes that require water to make them available. 

 

Crude oil 

Globally, the most important primary non-renewable energy carrier is crude oil or petroleum that forms the basis 

for oil products (e.g. kerosene, gasoline and heavy fuel oil). Production of crude oil is done by drilling wells and 

pumping the oil out. Primary production of crude oil includes well drilling and oil pumping from underground 

reservoirs (Blok, 2006). Gleick (1994) has estimated that about 2-8 m3 of water per 103 GJ(thermal) is needed for 

drilling, flooding and treating crude oil. When the amount of crude oil pumped out decreases, extraction is 

improved by so-called secondary recovery that needs water in the form of steam to improve the viscosity of the 

crude oil and enhance pumping (Blok, 2006). Thermal steam injection requires 100-180 m3 of water per 103 

GJ(thermal) (Gleick, 1994).  
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Coal 

The second important non-renewable primary energy carrier is coal, a sedimentary rock found both near the 

Earth’s surface and in deeper deposits that needs to be recovered through mining (Blok, 2006). Open pit mining 

requires about 2 m3 of water per 103 GJ(thermal), while underground mining operations require about 3-20 m3 of 

water per 103 GJ(thermal) (Gleick, 1994). After mining the coal, it is often washed to remove nonfuel 

contaminants.  

 

Natural gas 

The third important non-renewable primary energy carrier is natural gas recovered by drilling wells into the 

underground. It needs limited treatment before use, for example, H2S and CO2 are generally removed. Crude oil 

and natural gas are often found together in porous reservoir rocks covered by a cap rock, from where the gas can 

be drilled. Gleick (1994) has estimated that plant operations require about 100 m3 of water per 103 GJ(thermal).     

 

Uranium 

The fourth important non-renewable primary energy carrier is uranium, present in the Earth’s crust in the form of 

ores with a content of uranium oxide (U3O8) between 0.01 and 1%. It is recovered from open pit and 

underground mines requiring water for processes like dust control and ore beneficiation. Requirements vary 

between 0.2 m3 of water per 103 GJ(thermal) for underground mining, to 20 m3 of water per 103 GJ(thermal) for 

open pit mining. The additional milling, refining and enriching of uranium requires another 20 m3 of water per 

103 GJ(thermal) (US Atomic Energy Comm., 1974) 

 

Electricity from hydropower 

Hydropower is the second most important renewable energy source after biomass. It uses the potential energy of 

water to drive turbines generating electricity. Dams in rivers create large water reservoirs (Shiklomanov, 2000; 

Blok, 2006). The water requirements for hydropower are mainly caused by evaporation and seepage from the 

reservoirs and are about 5-26 m3
 per 103 kWh(electric) (Gleick, 1994). 

 

Solar energy 

The radiation from the sun provides solar energy. Solar energy can be utilized in three ways: (i) heat production 

through solar collectors producing hot water; (ii) electricity production through PV cells; and (iii) electricity 

production through solar thermal power plants. These plants convert energy into hot air or steam used to generate 

electricity (Blok, 1994). Gleick (1994) has estimated that water requirements of solar thermal power plants are 

about 1 m3 per 103 kWh(electric). 

 

Electricity from wind energy 

Wind energy utilizes the kinetic energy in the air to generate electricity. In wind farms, the average, annual 

energy generated varies between 0.05 and 0.25 GJ(electric) per m2 (Blok, 2006). If the land remains available for 

other uses, for example for agriculture, no water requirements have to be allocated to wind energy. In that case, 

wind energy does not require water, whereas the water requirement for the construction of the turbines is 

negligible (Gleick, 1994).  



Water footprint of bio-energy and other primary energy carriers / 11 

Biomass 

For the production of biomass, agriculture applies the natural land base and requires the input of freshwater for 

crop growth. Solar radiation is the principal driving force for the evaporation of water. There are many equations 

available to estimate the evaporation of water, for example the Penman-Monteith equation that requires input of 

meteorological data (Allen et al., 1998). The FAO has used this equation for the development of the computer 

program CROPWAT (FAO, 2007), a useful tool for farmers for irrigation planning and management. 

 

2.2 The concept of the water footprint 

 

Natural capital - air, land, habitats and water - is essential for the natural environment that performs basic 

functions for human existence and life on earth (Costanza and Daly, 1992) such as the provision of biomass. The 

availability of freshwater is a prerequisite for biomass growth. A tool that assesses water requirements for crops 

as well as international virtual water flows related to the trade of crops and crop products is the concept of the 

water footprint (WF). This tool has been introduced by Hoekstra (2003), who defines the WF as the total annual 

volume of freshwater used to produce the goods and services related to a certain consumption pattern. The WF of 

a product (commodity, good or service) is defined as the volume of freshwater used for the production of that 

product at the place where it was actually produced (Hoekstra and Chapagain, 2007). Most of the water used is 

not contained in the product itself, however. In general, the actual water content of products is negligible 

compared to their WF. The WF shows water use for consumption, termed utilization, inside and outside the 

national territory. Results are expressed as m3/kg of product, m3/capita/year, or as m3/year on a national level. 

Globally, the main virtual water flows are related to utilization of soybeans (11%), wheat (9%), coffee (7%), rice 

(6%) and cotton (4%) (Hoekstra and Chapagain, 2008).  

  

Calculations of a WF are made by summing daily crop evapotranspiration (mm/day) over the growing period of 

a crop. The WF consists of three components: green, blue and gray virtual-water. The green virtual-water content 

of a product refers to the rainwater that evaporated during the production process, mainly during crop growth. 

The blue virtual-water content refers to surface and groundwater applied for irrigation that evaporated during 

crop growth. The gray virtual-water content of a product is the volume of water that becomes polluted during 

production. It is defined as the amount of water needed to dilute pollutants emitted to the natural water system 

during the production process to the extent that the quality of the ambient water remains beyond agreed water 

quality standards (Hoekstra and Chapagain, 2008).  

 

 





 

3. Methods 
 

3.1 General 
 

To make primary, non-renewable energy carriers available, several operations take place, many of which require 

water. The amount of water for a specific operation, however, varies. Requirements for the mining of coal, for 

example, vary between 2 m3/1000 GJ for surface mining, to 20 m3/1000 GJ for underground mining (Gleick, 

1994). For the assessment of the WF’s, the report summed the largest WF’s per operation per energy carrier. It 

derived data from Gleick (1994). In this way, the report probably overestimated the WF of non-renewable, 

primary energy carriers. On the other hand, the return flow generates pollution of large water quantities so that 

the pollution volume (gray water) is underestimated.    

 

In the category of primary, renewable energy carriers, the report distinguished between carriers from non-organic 

and carriers from organic sources, i.e. biomass. Carriers from non-organic sources for which the report calculated 

the WF were electricity from solar thermal power plants, from wind energy and from hydropower. For the 

assessment, the report derived data from Gleick (1994). The WF of hydropower was calculated by dividing data 

on global evaporation of artificial surface water reservoirs from Shiklomanov (2000) by information on 

hydroelectric generation from Gleick (1993) for the year 1990.  

  

3.2 Biomass 

 

Biomass is an umbrella term for all the material flows that derive from the biosphere, such as food and feed 

crops, energy crops, and organic wastes, such as manure and crop residues. For the assessment of the WF of 

biomass, this report only took crops into account; wastes fell outside the report. In general, agriculture grows 

crops for their reproductive or storage organs that have an economic value when applied for food, feed or 

materials production. The harvested organs are termed crop yield, i.e. the harvested production per unit of 

harvested area for crop products (FAO, 2007). The growth of these organs requires the preceding growth of 

complete plants with stems and foliage, however (Gerbens-Leenes and Nonhebel, 2004). The ratio of the crop 

yield to the total biomass yield is termed the harvest index (HI) and shows large differences among crops 

(Goudriaan et al., 2001). For food or feed purposes, agriculture aims at the crop yield. For energy purposes, 

however, total biomass yield can be applied rather than crop yield. Total biomass yield was calculated by 

dividing data on crop yields from the FAO (2007) by the HI. Table 1 shows data on HI used in this report 

derived from agricultural studies (Goudriaan et al., 2001; Akhtar, 2004).  

 

The report considered three categories of crops: (i) trees; (ii) bioenergy crops; and (iii) food crops. It made 

assessments for fifteen crops from the three categories mentioned above: poplar (trees), miscanthus (bioenergy 

crops), and for cassava, coconut, cotton, groundnuts, maize, palm oil, potato, wheat, rapeseed, sugar beet, sugar 

cane, sunflower, and soybean (food crops).  
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3.3 Energy from biomass 

 

The basis for energy from biomass is the universal photosynthesis process that stores solar energy in chemical 

bonds. Although the efficiency of this process varies, it shows a linear relationship between intercepted global 

radiation and above ground plant biomass under conditions of sufficient water and nutrient supply (Goudriaan et 

al., 2001; Monteith, 1977). All plants use glucose as the molecule that stores energy from photosynthesis and as 

the basis for all other organic compounds that make up plant tissues (Penning de Vries, 1983). The five main 

categories of organic compounds are: carbohydrates, proteins, lipids, lignins and organic acids. The amount of 

glucose needed for a unit of organic compound differs, resulting in different energy values for the compounds. 

This means that the composition of the biomass determines the availability of energy from a specific biomass 

type, resulting in differences in combustion energy. Energy analysis defines the energy content of a fuel as the 

amount of heat that is produced during combustion at 25o C at 1 bar. It distinguishes between the higher heating 

value (HHV) and the lower heating value (LHV) (Blok, 2006). For the HHV, energy analysis measures the heat 

content of water that is the product of the combustion process in the liquid form; in the case of LHV it measures 

the heat content in the gaseous form. Data on HHV and LHV become available from laboratory analyses and can 

be obtained from databases like the Phyllis database (ECN, 2007) or the database of the UT Wien (Reisinger et 

al., 1996). In general, however, organic systems, such as agriculture producing crops, show natural variation of 

its output, resulting in differences in crop composition (Gerbens-Leenes, 2006). Even for crops of the same type, 

variation occurs resulting in differences in HHV and LHV (ECN, 2007; Reisinger et al., 1996). For the 

assessment of the WF of energy from biomass, this natural variation forms a complication. To avoid large 

variation of results, this report defined hypothetical crops, H-crops, with a standardized composition derived 

from existing crops. Data were obtained from agricultural studies. Table 1 shows the fifteen H-crops and their 

main characteristics that formed the basis for the calculations (see also Appendix 3). Table 2 shows the heat of 

combustion values (HHV) for the five major groups of plant components in kJ/gram from Penning de Vries et al. 

(1989). Based on the composition of the H-crop and the HHV of the crop component, the report calculated the 

HHV of the H-crops. 
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Table 1. Main characteristics for fifteen hypothetical crops (H-crops). Information on composition, harvest index 
and dry mass are averages of existing crops. Data were derived from agricultural studies. 
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Composition dry 
mass (g /100 g)c 

               

Carbohydrates 87 4 40 14 75 45 78 62 62 7 29 57 82 45 76 
Proteins 3 40 21 27 8 14 9 10 10 22 37 7 5 14 12 
Fats 1 3 23 39 4 22 0 2 2 42 18 2 0 22 2 
Lignins 3 14 8 14 11 13 3 20 20 2 6 22 5 13 6 
Organic acids 3 0 4 3 1 3 5 2 2 1 5 6 4 3 2 
Minerals 
(K,Ca,P,S) 

3 39 4 3 1 3 5 4 4 26 5 6 4 3 2 
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Dry massb 0.38 0.50 0.85 0.15 0.85  0.13 0.85  0.13 0.15 0.27 0.21 0.85 0.85 
Composition dry 
mass (g /100 g)c 

               

Carbohydrates 52 62 62 52 62  52 52  52 52 62 52 62 62 
Proteins 25 10 10 25 10  25 25  25 25 10 25 10 10 
Fats 5 2 2 5 2  5 5  5 5 2 5 2 2 
Lignins 5 20 20 5 20  5 5  5 5 20 5 20 20 
Organic acids 5 2 2 5 2  5 5  5 5 2 5 2 2 
Minerals 
(K,Ca,P,S) 

8 4 4 8 4  8 8  8 8 4 8 4 4 

a. Source: Goudriaan et al. (2001) 
b. Source: Penning de Vries et al. (1989) 
c. Source: Habekotté (1997) 
d. Source: Akthar (2004) 
e. Assumption. 
f. Source: Nonhebel (2002) 
 
 
Table 2. Heat of combustion (HHV) for six major groups of plant components (kJ/gram). 
Plant component Heat of combustion (kJ / gram) 
Carbohydrates  17.3 
Proteins 22.7 
Fats 37.7 
Lignins 29.9 
Organic acids 13.9 
Minerals (K,Ca,P,S)   0.0 
Source: Penning de Vries (1989). 
 
 
3.4 Calculation of the water footprint of biomass 

 

The WF of biomass differs from the WF of other energy carriers because biomass derives from plants that need 

water for growth. For the assessment of the WF, the report takes the complete growing season of the plant into 

account and accumulates data on daily crop evaporation (ETc in mm/day) over the growing period of the crop 

using the FAO program CROPWAT. However, where Hoekstra and Chapagain (2007, 2008) allocate total 

evaporation to the crop yield (kg/ha), this report allocated total evaporation to biomass yield, because crop yields 

refer to the crop component usable for food, feed or materials production, while it is total biomass yield that is 

relevant for energy production. The report calculated the WF of energy from biomass (m3/GJ) in five steps.  
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Step 1: calculation crop water requirement (CWR) (m3/ha) 

 

The calculation of the water requirement of crop c CWR (c) (m3/ha) in a specific area was done by applying the 

calculation model CROPWAT (FAO, 2007) that is based on the FAO Penman-Monteith method (Allen et al., 

1998) to estimate reference evapotranspiration:  

 

CWR (c) = 10 *  Kc (c) * ETo (1) ∑
=

lp

d 1

 

where the factor 10 is applied to convert mm into m3/ha. The summation is done over the complete growing 

season of crop c, where lp is the length of the growing period in days. ETo is the reference crop 

evapotranspiration (mm/day) of a hypothetical surface covered with grass not short of water. Kc (c) is the crop 

coefficient that includes effects that distinguishes evapotranspiration of field crops from grass. Calculations were 

done for the fifteen crops shown in Table 1 grown in four different countries: Brazil, the Netherlands, the United 

States and Zimbabwe. For these countries, the main agricultural areas where specific crops are grown were 

derived from the USDA (2007). Appendix 4 gives an overview of these areas. For these areas, climatic data that 

were used as input for the model CROPWAT, were derived from the database of Müller and Hennings (2000). 

 

Step 2: calculation total biomass yield (BY )(tons /ha) 

 

The difference between total biomass yield and crop yield consists of a rest fraction that is not suitable for food, 

feed or materials production but can be used for energy production. This report allocated the CWR to the total 

biomass yield BY (c) (tons/ha) calculated as follows: 

 

BY (c)   = 
( )
( )cHI
cY

 (2) 

 

Where Y (c) is the crop yield (tons/ha) and HI (c) is the harvest index for crop c. Data on yields were derived 

from the FAO (2007), data on HI were derived from (Goudriaan et al., 2001; Akhtar, 2004). Appendix 4 shows 

an overview of yield data; Table 1 shows an overview of HI (c).  

 

Step 3: calculation water footprint biomass crop c, WFM(c), (m3/ton) 

 

The water footprint of crops per unit of mass, WFM (c) (m3/ton), was calculated as follows: 

 

WFM (c) = 
( )
( )cBY

cCWR
 (3) 
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Step 4: calculation average energy content of a H-crop (c), E (c) (GJ/ton)  

 

The calculation of the average energy content of a hypothetical crop, E (c) (HHV in GJ/ton), was done by 

combining data on heat of combustion of plant components (HHV in kJ/gram = GJ/ton) (see Table 2) with 

information on the composition of a H-crop (grams/gram) as shown in Table 1: 

 

E (c) = HI (c) * DMY(c) * ∑ Ci * Ay,i + (1-HI (c) * DMr(c) * Ci * Ar,i (4) 
=

5

1i
∑
=

5

1i

 

HI (c) is the harvest index of crop c, DMY(c) is the fraction of dry mass in the crop yield, and DMr(c) is the 

fraction of dry mass in the rest fraction, C is the heat of combustion of component i (HHV in kJ/gram), A is the 

amount of component i in the DM of the crop yield or rest fraction (grams/gram).  

 

Finally, Step 5 calculates the WF of energy from biomass WFE (c) (m3/GJ) by dividing results from step 3 by 

results from step 4:  

 

WFE (c) = 
)(

)(
cE

cWFM  (5) 

 

 





 

4. Results and discussion 
 

4.1 The water footprint of primary energy carriers (excluding biomass) 

 

Table 3 shows the WF of operations that make the non-renewable energy carriers coal, uranium, crude oil and 

natural gas available.  

 

Table 3. Average water footprint for operations that make energy carriers available and average total water 
footprint for coal, uranium, crude oil, natural gas, electricity from hydropower, active solar space heat and 
electricity form wind energy (m3/GJ). 

Operation  Average water footprint (m3/GJ) 
Coal  
Surface mining 0.004 
Deep mining 0.012 
Slurry pipelines  0.063 
Beneficiation 0.004 
Other plant operations 0.090 
Total (average) 0.164 
Uranium  
Open pit uranium mining 0.020 
Underground uranium mining 0.000 
Uranium milling 0.009 
Uranium hexafluoride conversion 0.004 
Uranium enrichment: gaseous diffusion 0.012 
Uranium enrichment: gas centrifuge 0.002 
Fuel fabrication 0.001 
Nuclear fuel processing 0.050 
Total (average) 0.086 
Crude oil  
Onshore oil exploration 0.000 
Onshore oil extraction and production 0.006 
Enhanced oil recovery 0.120 
Water flooding 0.600 
Thermal steam injection 0.140 
Forward combustion/air injection 0.050 
Micellar polymer 8.900 
Caustic injection 0.100 
Carbon dioxide 0.640 
Oil refining (traditional) 0.045 
Oil refining (reforming and hydrogenation) 0.090 
Other plant operations 0.070 
Total (average) 1.058 
Natural gas  
Gas processing 0.006 
Pipeline operation 0.003 
Plant operations 0.100 
Total (average) 0.109 
Other  
Electricity from hydropower 22.300 
Electricity from solar active space heat 0.265 
Electricity from wind energy 0.000 
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Large differences among the WF of operations occur, resulting in large differences among average, total WF’s of 

primary non-renewable energy carriers. The WF of underground uranium mining, for example, is negligible, 

whereas the WF of the deep mining of coal is 0.012 m3/GJ, onshore oil extraction and production 0.006 m3/GJ, 

and surface mining of coal only 0.004 m3/GJ. For the non-renewable and renewable energy carriers (excluding 

biomass), the WF increases in the following order: electricity from wind energy (0.00 m3/GJ), uranium (0.09 

m3/GJ), natural gas (0.11 m3/GJ), coal (0.16 m3/GJ), electricity from solar active space heat (0.27 m3/GJ), crude 

oil (1.06 m3/GJ) and finally hydropower (22.3 m3/GJ). In the category of primary non-renewable energy carriers, 

the WF of crude oil is ten times the WF of uranium. Table 3 also shows that, except for hydropower, the average 

total WF of the renewables (excluding biomass) is smallest, of the non-renewables largest.  

 

As mentioned before, the WF includes three types of water: green, blue and gray water. The first two are related 

to water use, the latter to water pollution. Gray water is defined as the amount of water needed to dilute 

pollutants emitted to the natural water system during the production process to the extent that the quality of the 

ambient water remains beyond agreed water quality standards. To make energy carriers available, it is possible 

that water becomes polluted. For example, underground coal mining sometimes leads to contamination of water 

(Gleick, 1994). This report took pollution, and thus gray water into account to a limited extent only by assuming 

that the return flows (water volumes that do not evaporate but return to ground water and surface water systems) 

are polluted. In reality, one cubic meter of return flow generally pollutes much more water than one cubic meter. 

In this way, the report probably underestimated the WF of some energy carriers that show large water pollution.  

 

4.2 Energy from biomass 

 

Table 4 shows the results for the calculated heat of combustion of the H-crop yields and rest fractions in MJ per 

kg dry mass. It shows that the heat of combustion varies between 15 MJ per kg for coconuts and 28 MJ for 

groundnuts. Table 5 shows the heat of combustion for the total biomass of the H-crop expressed in MJ per kg 

fresh weight. Differences among heat of combustion values are much larger among crops when the values are 

expressed per unit of fresh weight rather than per unit of dry mass. Table 5 shows a difference of a factor of five 

between the lowest and highest values. In general, crops showing small water contents and large oil contents 

have relatively large heat of combustion values, for example palmkernels and sunflower. Crops that have a large 

water content and a small oil content have small values, for example potato and sugarcane.  

 

4.3 The water footprint of energy from biomass 

 

Tables 6a-b show the results for the WF of energy from biomass expressed in cubic meters of water per unit of 

energy and in cubic meters per unit of mass for the fifteen crops grown in four different countries. Differences 

among WF’s of biomass were large, dependant on the type of biomass, the agricultural system applied and 

climatic conditions. For the types of biomass included in this report, the largest difference was found between 

maize grown in the Netherlands and cotton grown in Zimbabwe; the WF of the cotton was forty times the WF of 

Dutch maize. In general, some crops have a lower WF per unit of energy than other crops. In order to compare 

the WF of crops, Figure 1 shows the relative WF per country, where the WF of maize in that country is set to 1.  
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Table 4. Heat of combustion for the crop yield of H-crops and their rest fraction per unit of dry mass. 
H-Crop and rest fraction Heat of combustion HHV (MJ per kg dry mass) 
Cassava 17.4 
Cassava leaves 18.7 
Coconut 15.1 
Coconut shell 20.0 
Cotton 23.3 
Cotton stems 20.0 
Groundnuts 27.9 
Groundnut leaves 18.7 
Maize 19.7 
Maize stems 20.0 
Miscanthus 20.0 
Palmkernelsc 23.6 
Poplar 20.0 
Poplar leaves 18.7 
Potato 17.1 
Potato leaves 18.7 
Rapeseed 22.8 
Rapeseed leaves 18.7 
Sugarbeet 19.4 
Sugarbeetleave 18.7 
Sugarcane 19.6 
Sugarcane stems 20.0 
Soybeans 22.7 
Soybeans leaves 18.7 
Sunflower 23.6 
Sunflowerstems 20.0 
Wheat 18.7 
Wheatstems 20.0 

 
 
Table 5. Heat of combustion of the total biomass of H-crops per unit of fresh weight. 

H-Crop Heat of combustion total biomass (MJ per kg fresh weight) 
Cassava   5.2 
Coconut   9.1 
Cotton 17.9 
Groundnuts   8.3 
Maize 16.8 
Miscanthus 17.0 
Oranges 12.9 
Palmkernelsc 20.0 
Poplar 16.6 
Potato   3.5 
Rapeseed   6.8 
Sugarbeet   3.8 
Sugarcane   5.1 
Soybeans   9.9 
Sunflower 17.9 
Wheat 16.5 
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Table 6a. WF of biomass for fifteen H-crops grown in the Netherlands, the US, Brazil and Zimbabwe (m3/GJ). 
 m3/GJ 
H-crop The Netherlands United States Brazil Zimbabwe 
Cassava -- --   29.7 204.7 
Coconut -- --   48.8 204.7 
Cotton -- 135.0   95.6 355.6 
Groundnuts --   57.6   51.4 253.6 
Maize   9.1   18.3   39.4 199.6 
Miscanthus 19.7   37.1   48.8   63.8 
Palm oil and kernels -- --   75.2 -- 
Poplar 22.2  41.8   55.0   72.0 
Potatoes 20.9  45.8   30.7   64.8 
Soybeans --  99.3   61.1 138.0 
Sugar beets 13.4  23.3 -- -- 
Sugarcane --  30.0   25.1   31.4 
Sunflower 26.9  60.6   54.3 145.5 
Wheat 13.8  84.2   81.4   68.7 
Winteroilseedrape 67.3 113.3 205.2 -- 
Average 24.2 58.2 61.2 142.6 

 
 
Table 6b. WF of biomass for fifteen H-crops grown in the Netherlands, the US, Brazil and Zimbabwe (m3/ton). 

 m3/ton 
H-crop The Netherlands United States Brazil Zimbabwe 
Cassava -- --  155.9 1074.2 
Coconut -- --  444.0 1842.5 
Cotton -- 2414.0 1709.5 6358.7 
Groundnuts --  477.1  425.7 2100.5 
Maize 153.3  307.7  663.9 3363.1 
Miscanthus 334.0  629.1  827.5 1081.8 
Palm oil and kernels -- -- 1502.2 -- 
Poplar 369.4  695.6  915.2 1198.1 
Potatoes   72.4  111.3  106.4   224.6 
Soybeans --  978.7  602.2 1360.5 
Sugar beets   50.5     87.7 -- -- 
Sugarcane --   152.8  127.9   160.0 
Sunflower 481.3 1084.3  971.6 2603.4 
Wheat 150.0 1388.4 1360.3 1132.8 
Winteroilseedrape 459.0   772.7 1459.5 -- 
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Figure 1 shows that in the Netherlands, maize and wheat have the smallest WF, the WF of sugar beet is 50% 

larger, whereas the WF of miscanthus is twice the WF of maize, of poplar and potato two and a half the WF of 

maize, of sunflower three times and of oilseedrape seven and a half times the WF of maize. In the US, maize 

also has the smallest WF. The WF’s of sugar beet and sugar cane are about 50% larger, poplar and potato two 

and a half times larger, groundnut and sunflower three times, and oilseedrape and cotton six and seven and a half 

times larger respectively. In Brazil, sugar cane shows about half the WF of maize; cotton and oilseedrape have 

two and a half and five times the WF of maize. The other crops have WF’s in the same order of magnitude as 

maize. In Zimbabwe, only cotton has a WF that is substantially larger than the WF of maize, twice the value of 

maize. All other crops have WF’s in the same order of magnitude or smaller. In general, the WF of maize is 

favourable, the WF of oilseedrape and cotton unfavourable. Figure 1 also shows that some crops that are 

specifically grown for energy, i.e. miscanthus, poplar and winteroilseedrape have a relatively large WF 

compared to a food crop such as maize. An exception is poplar grown in Zimbabwe. For this crop the report 

applied average yield data taken from production systems that probably overestimated yields levels in that 

country, so that it underestimated the WF of poplar. From a water perspective, crops grown for energy do not 

have a more favourable WF than crops grown for food.  

 

It is stressed that for the assessment of the WF, the report only took the energy content of biomass into account. 

The energy input for the agricultural system, for example for fertilizer and pesticides, fell outside the report. For 

high input agricultural systems, the energy input is substantial (Pimentel and Patzek, 2005) so that net energy 

yields are smaller than calculated in this report. This means that this report probably underestimated the WF of 

biomass from agricultural systems with relatively large energy inputs. 
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Figure 1. Relative water footprint (WF) for fifteen crops grown in the Netherlands, the United States, Brazil and 
Zimbabwe, where the WF of maize in the country considered is set to 1. 
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4.4 A shift towards energy from biomass 

 

At present, average direct and indirect energy use in western societies is about 100 GJ per capita per year 

(Kramer et al., 1994; Vringer and Blok, 1995; Noorman and Schoot Uiterkamp, 1998; Moll et al., 2005). This 

energy is generated with a mix of primary energy carriers, mainly non-renewables (coal, oil, natural gas and 

uranium) and some renewable energy from hydropower (Blok, 2006; BP, 2007). Table 7 shows that the WF of 

non-renewables and renewables (excluding biomass) is much smaller than the average WF of biomass.  

 
Table 7. Average water footprint for fossil energy carriers, electricity from active solar space heat, electricity form 
wind energy, biomass produced in the Netherlands, Brazil, the United States and Zimbabwe (m3/GJ). 

Primary energy carriers Average water footprint (m3/GJ) 

Wind energy    0.00 
Natural gas    0.04 
Nuclear energy    0.09 
Coal    0.16 
Solar thermal energy    0.30 
Crude oil    1.06 
Biomass the Netherlands (average)  24.16 
Biomass US (average)  58.16 
Biomass Brazil(average)  61.20 
Biomass Zimbabwe (average) 142.62 
Biomass (average the Netherlands, US, Brazil, Zimbabwe)  71.54 

 

 

Based on the average per capita energy use in western societies, a mix from coal, crude oil, natural gas and 

uranium requires about 35 m3 per capita per year. If the same amount of energy is generated through the growth 

of biomass in a high productive agricultural system, as applied in the Netherlands, the WF of 100 GJ is 2420 m3. 

In the United States, where yields are lower than in the Netherlands, the WF is 5820 m3 per capita per year, in 

Brazil 6120 and in Zimbabwe even 14260 m3 per capita per year. This means that the WF of biomass is 70 to 

400 times larger than the WF of the other primary energy carriers. This water requirement lies in the same order 

of magnitude than the per capita WF for food (Hoekstra and Chapagain, 2007). Moreover, food consumption 

patterns are changing (Gerbens-Leenes and Nonhebel, 2002): globally, a transition is taking place towards more 

affluent consumption, especially the consumption of meat, dairy and beverages increases. This will not only 

require more land, but also more freshwater. Estimates for 2015 show that total water needs for food will double, 

causing further degradation of ecosystems (Rockström et al., 2007). Strategies towards large use of biomass for 

energy purposes should take the large WF’s of this energy source into account, as well as the competition with 

water for food.  

 

The current and future economic development, for example in China and India, not only causes an increasing 

need for energy, but also for more affluent foods and thus for natural resources, such as freshwater (Gerbens-

Leenes, 2006). The global resources are inadequate to meet, let alone sustain the current western life style for 

each individual. Insights obtained in this report can contribute to a better understanding of the environment-

consumption relationship.  



 

5. Conclusions 
 

This report has clarified the freshwater implications for a large scale introduction of biomass for energy 

purposes. It has shown the relationship between freshwater and energy, especially between freshwater and 

biomass for energy purposes. Results show large differences between the average WF of non-renewable primary 

energy carriers on the one hand and the average WF of energy from biomass on the other. But also within the 

two categories large differences occur. The WF of non-renewable primary energy carriers increases in the 

following order: uranium, natural gas, coal and finally crude oil, which shows a WF of ten times the WF of 

uranium. Within the category of biomass for energy purposes, differences are even larger. These differences are 

caused by differences in crop characteristics, agricultural production situations, climatic circumstances, as well 

as by local factors. For example, the WF per unit of energy of cotton grown in Zimbabwe is forty times the WF 

of maize grown in the Netherlands. Biomass grown for energy purposes, such as poplar, miscanthus or 

winteroilseedrape, however, do not show more favourable WF’s than food crops, such as, maize.  

 

When a shift occurs towards larger use of biomass, the WF of energy increases substantially. The report shows 

that the WF of energy from biomass is 70 to 400 times larger than the WF of a mix of energy from non-

renewable sources. The current and future economic development causes a continued need for natural resources, 

such as freshwater. A shift towards biomass energy, as promoted to decrease the impact of fossil energy on the 

climate system, will bring with it a need for more water. The concept of the WF and the results for biomass 

presented in this report have led to new insights with respect to the large impact of energy from biomass on the 

use of freshwater resources. This knowledge can be a valuable contribution to research concerning energy needs 

and freshwater availability for the near future.  
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Appendix 1: List of abbreviations 
 
 
BY biomass yield 

 
CO2 carbon dioxide 

 
CWR crop water requirement 

 
FAO Food and Agriculture Organization of the United Nations 

 
GJ gigajoule 

 
H-crops hypothetical crops 

 
HHV Higher heating value 

 
H2S dihydrogensulfide 

 
kJ kilojoule 

 
kWh kilowatthour 

 
LHV Lower heating value 

 
m3 cubic meter  

 
PV photovoltaic 

 
WF water footprint 
 





 

Appendix 2: List of definitions 
 

 

Biofuel Renewable secondary energy carrier derived from biomass in 

solid, liquid or gaseous form. Examples are charcoal, ethanol, 

biodiesel and biogas.  

  

Biomass Material in non-fossilized form. Examples are agricultural 

crops, forestry products, agricultural and forestry wastes and 

by-products, manure, microbial biomass, and industrial and 

household organic waste.  

  

Blue component of the water footprint Volume of surface and groundwater evaporated as a result of 

the production of the product or service. For example, for 

crop production, the “blue” component is defined as the sum 

of the evaporation of irrigation water from the field as the 

evaporation of water from irrigation canals and artificial 

storage reservoirs. It is the amount of water withdrawn from 

ground- or surface water that does not return to the system 

from which it came. 

  

Crop yield Harvested production per unit of harvested area for crop 

products 

  

Evapotranspiration Evaporation from the soil where crops are grown including 

the transpiration of water that actually passes crops 

  

Fossil energy Non-renewable energy derived from plant material stored in 

the earth’s crust for millions of years, such as oil, natural gas 

and coal. The use of fossil energy causes emissions of carbon 

dioxide that contributes to global warming  

  

Green component of the water footprint Volume of rainwater that evaporated during the production 

process. This is mainly relevant for agricultural products (e.g. 

crops or trees) where it refers to the total rainwater 

evapotranspiration (from fields and plants). 

  

Grey component of the water footprint Volume of freshwater needed to dilute polluted freshwater 

flows that leave a specific site after being used by the 

business at that site to such an extent that the quality of the 



34 / Water footprint of bio-energy and other primary energy carriers 

sewage water remains above agreed water standards. 

  

Harvest index Ratio of crop yield to total biomass yield 

  

Primary energy carrier Energy carriers directly derived from a natural source without 

any conversion process 

  

Renewable energy Energy deriving from renewable sources, mostly solar 

irradiation. Examples are biomass energy, wind energy and 

solar energy.  

  

Secondary energy carrier Energy carriers that do not derive from a natural source and 

are the product of a conversion process 

  

Water footprint An indicator of water use that looks at both direct and 

indirect water use of a consumer or producer. The water 

footprint of an individual, community or business is defined 

as the total volume of freshwater that is used to produce the 

goods and services consumed by the individual or community 

or produced by the business. The water footprint of an 

intermediate or final product (including energy) is defined as 

the total volume of freshwater that is used directly or directly 

to produce the product. Water use is measured in terms of 

water volumes consumed (evaporated) and/or polluted per 

unit of time. A water footprint can be calculated for any well-

defined group of consumers (e.g. an individual, family, 

village, city, province, state or nation) or producers (e.g. a public 

organization, private enterprise or economic sector). The water 

footprint is a geographically explicit indicator, not only showing 

volumes of water use and pollution, but also the locations. 



 

Appendix 3: Composition dry mass crops 

 
 
 Composition dry mass (g per 100g)a   

 carbo-
hydrates proteins fats lignins organic 

acids 
harvest 
indexb 

percentage 
of waterb 

Cassava 87 3 1 3 3 0.70 62 
Cassava leaves 52 25 5 5 5  62 
Coconut 4 40 3 14 0 0.30 50 
Coconut shell 62 10 2 20 2  50 
Cotton 40 21 23 8 4 0.33 15 
Cotton stems 62 10 2 20 2  15 
Groundnuts 14 22 39 14 3 0.25 5 
Groundnut leaves 52 25 5 5 5  85 
Maize 75 8 4 11 1 0.45 15 
Maize stems 62 10 2 20 2  15 
Miscanthus 62 10 2 20 2 1.00 15 
Palmkernelsc 45 14 22 13 3 1.00 15 
Poplar 62 10 2 20 2 1.00 15 
Poplar leaves 52 25 5 5 5  15 
Potato 78 9 0 3 5 0.70 75 
Potato leaves 52 25 5 5 5  87 
Rapeseed 7 22 42 2 1 0.32 26 
Rapeseed leaves 52 25 5 5 5  87 
Sugarbeet 82 5 0 5 4 0.66 79 
Sugarbeetleave 52 25 5 5 5  79 
Sugarcane 57 7 2 22 6 0.60 73 
Sugarcane stems 62 10 2 20 2  73 
Soybeans 29 37 18 6 5 0.40 8 
Soybeans leaves 52 25 5 5 5  85 
Sunflower 45 14 22 13 3 0.31 15 
Sunflower stems 62 10 2 20 2  15 
Wheat  76 12 2 6 2 0.42 15 
Wheat stems 62 10 2 20 2  15 
a. Source: Penning de Vries, 1989 
b. Source Goudriaan et al., 2001 
c. Source: Arrieta et al., 2007 
 
 
 





 

Appendix 4: Agricultural information for the main crops in the U.S.,  
Brazil ,  the Netherlands and Zimbabwe 
 
Crop information of crops grown in the United States and crop water requirements per growing period. 

United States       
Crop Yield 

(ton per 
ha 

2005a) 

Most 
important 

state 

Contribution 
state to total 
production % 

Weather 
station 

Latitude 
and 

longitude 

Crop water 
requirement (mm 

per growing 
season) 

Cotton 6.0 Texas 27 Amarillo 35.23oN 
101.7oW 

1011 

Groundnuts 3.3 Georgia 42 Atlanta 33.65oN 
 84.42oW 

633 

Maize 9.3 Iowa 19 Des Moines 41.58o N 
 93.62oW 

635 

Miscanthus 18.8 Iowab  Des Moines 41.58o N 
 93.62oW 

710 

Poplar 17.0 Iowab  Des Moines 41.58o N 
 93.62oW 

710 

Potato 43.5 Iowab  Des Moines 41.58o N 
 93.62oW 

691 

Rapeseed 1.6 Iowab  Des Moines 41.58o N 
 93.62oW 

377 

Red 
winterwheat 

2.8 Kansas 24 Dodge City 37.77oN 
 99.97oW 

926 

Sugarbeet 50.0 Minnesota 31 Minneapolis 44.88oN 
 93.22oW 

666 

Sugarcane 67.8 Florida 50 Tampa 27.95 oN 
 82.45 oW 

1725 

Soybeans 2.9 Iowa 16 Des Moines 41.58o N 
 93.62oW 

710 

Sunflower 1.7 North 
Dakota 

51 Bismarck 46.77oN 
100.75oW 

604 

a Source FAO, 2007 
b Assumption because of lack of data. 
 
 
Crop information of crops grown in Brazil and crop water requirements per growing period. 

Brazil, weather station Tres Lagoas 20.78oS, 51.70oW 

Crop Yield (ton per ha 2005a) Crop water requirement 
(mm per growing season) 

Cassava 13.6 304 
Coconuts 10.5 1557 
Cotton 1.4 744 
Groundnuts 2.3 395 
Maize 3.1 304 
Miscanthus 18.8 1557 
Poplar 17.0 1557 
Potato 30.7 335 
Rapeseed 1.7 770 
Sugarcane 73.0 1557 
Sunflower 1.6 502 
Soybeans 2.2 331 
Winterwheat 1.9 639 

a Source: FAO, 2007 
 
 
 



38 / Water footprint of bio-energy and other primary energy carriers 

Crop information of crops grown in the Netherlands and crop water requirements per growing period. 
The Netherlands, weather station Eelde 

Crop Yield (ton per ha 2005a) Crop water requirement 
(mm per growing season) 

Maize 12.2 416 
Miscanthus 18.8 628 
Poplar 17.0 628 
Potato 41.6 430 
Rapeseed 3.7 530 
Sugarbeet 65.2 499 
Sunflower 2.5 385 
Winterwheat 8.6 308 

a Source: FAO, 2007 
 
 
Crop information of crops grown in Zimbabwe and crop water requirements per growing period. 

Zimbabwe   
Crop Yield (ton per ha 2005a) Crop water requirement 

(mm per growing season) 
Cassava 4.4 670 
Coconut 2.1 1290 
Cotton 0.5 1017 
Groundnuts 0.6 649 
Maize 0.7 498 
Miscanthus 18.8 1290 
Oranges 5.8 1290 
Poplar 17.0 1290 
Potato 15.9 511 
Sugarcane 76.5 2037 
Sunflower 0.7 546 
Soybeans 1.6 558 
Wheat 3.0 818 

a Source: FAO, 2007 
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