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urgency of hydrological research to understand and predict the interactions of society and water, to EDITOR

support sustainable water resource use under changing climatic and environmental conditions. This D. Koutsoyiannis

paper reports on the first Panta Rhei biennium 2013-2015, providing a comprehensive resource that

describes the scope and direction of Panta Rhei. We bring together the knowledge of all the Panta Rhei ~ ASSOCIATE EDITOR

working groups, to summarize the most pressing research questions and how the hydrological com- not assigned
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impacts and environmental change. Finally, we look back to the six driving science questions identified decade; socio-hydrology;

at the outset of Panta Rhei, to quantify progress towards those aims. climate change; human
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1 Introduction (Vorosmarty et al. 2010). No wonder, then, that hydrology is
now complemented by socio-hydrology (Sivapalan et al. 2012,
Di Baldassarre et al. 2015, Sivapalan and Bloschl 2015), and the
hydrological cycle by the hydro-social cycle (Linton and Budds
2014). In response to the imperative to include human impact as
integral to hydrological research, the International Association of
Hydrological Sciences (IAHS) launched the hydrological decade
2013-2022 with the theme “Panta Rhei: Change in Hydrology and

The hydrological cycle, from catchments to global scales, has for
thousands of years been intimately linked with human activity.
Humans have a direct impact on 83% of Earth’s land area
(Sanderson et al. 2002) and use 54% of available global freshwater
runoft (Postel et al. 1996). Eighty percent of the world’s population
lives under high water security threat, and 65% of global river
discharge is under moderate to high biodiversity threat
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Figure 1. The Panta Rhei logo.

Society” (Montanari et al. 2013; Fig. 1). This paper reports on the
first Panta Rhei biennium 2013-2015. We summarize the most
pressing research questions and provide examples from around
the globe, through the eyes of the working groups embarking on
those challenges.

The title of this paper “Global perspectives on hydrology,
society and change” draws from several motivations. The suc-
cess of Panta Rhei, as with its predecessor, “Predictions in
Ungauged Basins, PUB” (Sivapalan et al. 2003, Bloschl et al.
2013, Hrachowitz et al. 2013), is founded on collaborations
between diverse research groups, nationally and internationally,
from the developed and developing world. Panta Rhei benefits
from interaction with other major worldwide hydrological
cooperation frameworks, from intergovernmental and scientific
spheres. In particular, these include the UNESCO International
Hydrology Programme and the World Meteorological
Organization Commission for Hydrology (Young et al. 2015,
Wehn et al. 2016), the International Council for Science and the
Intergovernmental Panel on Climate Change (Bai et al. 2016,
Brondizio et al. in press). Panta Rhei has the explicit aim of
superseding case studies, to derive general and transferable
results. We believe that this can only be achieved through
study and comparison of hydrological and socio-hydrological
systems on a global scale.

A global perspective is essential due to the increasingly
interconnected nature of human society, water and other
resource use and human impacts on climate, land and water
(Bierkens 2015, VOrosmarty et al. 2015). All these intercon-
nections are emerging with an unprecedented intensity in the
Anthropocene era, which we use to describe the period dur-
ing which human activities have had a significant global
impact on Earth’s ecosystems, including hydrology (Crutzen
2002, Steffen et al. 2011). Water exchanges include direct

international water exchanges, transboundary river flows
and global virtual water trade, with water quantity and quality
both inherent to these transfers (Hoekstra 2011).
International human impacts on water systems include cli-
mate change effects, as well as international land purchase
and management and the effects of international policies. We
hope that Panta Rhei will match these international exchanges
of water with exchanges of water information, water govern-
ance knowledge and advances in the science of “hydrology,
society and change”. In its latest global risk report, the World
Economic Forum (2015) listed water crises as the most
important risk to the global economy in terms of potential
impact. We believe that Panta Rhei will provide a coherent
and timely contribution of the hydrological community to the
multiple challenges of water security (Vérésmarty et al. 2010,
UN-Water 2013, Cudennec et al. 2015), planetary boundaries
(Rockstrom et al. 2009) and capability building in these areas.

The remainder of this paper is organized as follows: in
Section 2 we connect the Panta Rhei working groups to the
driving science questions. In Section 3 we consider advances
and challenges in monitoring, describing and predicting our
changing world and in Section 4 we consider interactions of
society and water in a global context, including descriptions
of the socio-hydrological system, human and urban controls
and water footprints. The governance of water, decision mak-
ing and uncertainty are investigated in Section 5 and in
Section 6 we focus on hydrological challenges in the
Anthropocene, particularly water scarcity, water quality and
flooding. Finally, in Section 7 we discuss the next steps of the
Panta Rhei initiative.

2 Science questions and working groups of Panta
Rhei

Six driving science questions were set out at the beginning of the
Panta Rhei initiative (Table 1). These questions summarize the
discussions, at meetings and online, that led to the formation of
Panta Rhei. The questions provide a guiding framework for the
working groups formed by the community, which lie at the
heart of Panta Rhei, and drive the resulting collaborations and
research. The working groups are listed in Table 2, showing a
diverse range of themes identified by the community as impor-
tant components of the shift towards research that embraces the
interconnected nature of the physical, ecological, biogeochemical
and human subsystems of the overarching hydrological system
(Wagener et al. 2010). This section provides a brief summary of
how the working groups’ research links to the science questions,
to quantify progress towards these goals.

In many cases, Science questions 1, What are the key gaps
in our understanding of hydrological change? and 5, How can
we advance our monitoring and data analysis capabilities to
predict and manage hydrological change? have been
approached together, as groups working in remote areas
such as the Tibetan Plateau look to new technologies such
as remote sensing to improve our hydrological understanding
(Section 3.1). However, to predict the behaviour of such
systems under societal and climate changes remains an open
challenge. Initiatives in crowd-sourcing and open data offer
opportunities to make better use of existing data, and to
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Table 1. The science questions of Panta Rhei, with examples, and a list of
working groups addressing each question (working group numbers refer to

Table 2. The working groups of Panta Rhei.

Working group

Chair

Table 2).

Science question

Examples

Working groups

1 What are the key gaps
in our understanding
of hydrological
change?

2 How do changes in
hydrological systems
interact with, and
feedback to, natural
and social systems
driven by hydrological
processes?

3 What are the
boundaries of coupled
hydrological and
societal systems?

4 How can we use
improved knowledge
of coupled
hydrological-social
systems to improve
model predictions,
including estimation of
predictive uncertainty
and assessment of
predictability?

5 How can we advance
our monitoring and
data analysis
capabilities to predict
and manage
hydrological change?

6 How can we support
societies to adapt to
changing conditions by
considering the
uncertainties and

Complex geographic
systems, such as mountain
areas, urban areas, alluvial
fans, deltas, intensive
agricultural areas.

Inter- and transdisciplinary
understanding

Study of history of these
coupled systems
Hydrology-society as
tightly-coupled not
loosely-coupled models.
Interaction of natural
variability with human
effects.

External drivers and
internal system properties
of change.

Estimation of future
boundary conditions.
Estimation of design
variables under change,
including scientific and
societal uncertainty.
Ability to make predictions
in changing systems,
including feedback effects
that change the
equilibrium behaviour

Opportunities for remote
sensing in areas without
dense hydrological
networks

Open data initiatives

Impact on policy making
and prediction

Education strategies
Interdisciplinary activity
Science-society knowledge

4,7,8,11,12, 15,
16, 17, 18, 20, 26,
27, 30, 31

2,6,7,9,12,15, 16,

17, 18, 19, 20, 21,
24, 26, 27, 28, 30,
31

2,5,7,12,15,17,
18, 19, 20, 26, 27,
28, 30, 31

1,2,4,7,810, 11,

12,17, 18, 20, 21,
27, 30, 31

1,4,7,9,10,17, 18,

20, 21, 23, 24, 27,
30

1,2,4,56,7,89,

11,16, 17, 18, 19,
20, 21, 24, 28, 30

feedbacks between
natural and human-
induced hydrological
changes?

co-production

enable communities to contribute towards the understanding
of the hydrological systems that they interact with.

Many Panta Rhei members are contributing towards the
quickly growing body of research in hydro-social systems
(Section 3.2). This young area uses new terminology such as
“socio-hydrology”, “the science of people and water, a new
science that is aimed at understanding the dynamics and co-
evolution of coupled human-water systems” (Sivapalan et al.
2012), and the related concept of the “hydro-social cycle” that
refers to the inseparable social, political and physical dimen-
sions of water (Linton and Budds 2014). The area offers
opportunities to ask fundamental questions regarding how
to describe these coupled systems, approaching Science
Question 2, How do changes in hydrological systems interact
with, and feedback to, natural and social systems driven by
hydrological processes? Strategies include using data-driven
methods to understand the properties of these systems, and
using case studies to understand interactions and feedbacks in

1 Hydro-meteorological extremes: decision making in an  Adrian Pedrozo
uncertain environment Acuia

2 Large dams, society, and environment Bellie Sivakumar

3 Thirsty future: energy and food impacts on water Ana Mijic

4 Changing biogeochemistry of aquatic systems in the Hong-Yi Li
Anthropocene

5 Transdisciplinarity Tobias Krueger

6 Natural and man-made control systems in water Ronald van
resources Nooijen
7 Water and energy fluxes in a changing environment Maria J. Polo
8 Epistemic uncertainties Paul Smith
9 Comparative water footprint studies Arjen Y.
Hoekstra
10 Hydrologic services and hazards in multiple ungauged Hilary McMillan

basins

11 Understanding flood changes Alberto Viglione

12 Physics of hydrological predictability Alexander
Gelfan

13 Mountain hydrology Shreedhar
Maskey

14 Large sample hydrology Vazkén
Andreassian

15 Socio-hydrologic modelling and synthesis Veena
Srinivasan

Tatiana Bibikova
Alfonso Mejia

16 Sustainable water supply in urban change
17 Water footprint of cities

18 Evolving urban water systems Alfonso Mejia
19 Changes in flood risk Heidi Kreibich
20 Anthropogenic and climatic controls on water Attilio

availability (ACCuRAcY) Castellarin
21 Floods in historical cities Alberto
Montanari
22 Prediction under change (PUC) Hafzullah Aksoy
23 Data-driven hydrology Elena Toth

24 Modelling hydrological processes and changes Yangbo Chen

25 Resilience-based management of natural resources: the David Finger
fundamental role of water and soil in functional
ecosystems

26 Integrating history, social conflicts and hydrology: from Victor Rosales
semi-pristine to highly modified hydrological systems  Sierra

27 Drought in the Anthropocene Anne van Loon

28 Water scarcity assessment: method and application Junguo Liu

29 Improving hydrological systems knowledge Jun Xia

30 Process-based hydrological modelling for decision- Chaopeng Shen
making

31 Status and future of African river systems Jorg Helmschrot

situations, such as competition for water by industry and
communities in Mexico. In a similar area, Science Question
3, What are the boundaries of coupled hydrological and socie-
tal systems? has encouraged working groups to consider how
to treat linked drivers, such as energy, and linked systems,
such as ecology (Section 4.1).

Panta Rhei deals with practical and pressing issues in
prediction and governance of water resources. Many different
types of models are used in water management, and therefore
the responses to Science Question 4, How can we use
improved knowledge of coupled hydrological-social systems to
improve model predictions, including estimation of predictive
uncertainty and assessment of predictability? are equally
broad. They range from water scarcity models and metrics,
predictions of flood or drought impacts, to prediction of
downstream impacts from changes in mountain areas
(Section 6). All these models seek to include the impacts
and feedbacks of humans on hydrological systems. Groups
are questioning how uncertain societal futures and epistemic
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uncertainties affect our ability to predict (Section 5.2). Panta
Rhei seeks to empower societies to understand the coupled
human-water system in Science Question 6, How can we
support societies to adapt to changing conditions by considering
the uncertainties and feedbacks between natural and human-
induced hydrological changes? This question underlies Panta
Rhei research to compare and contrast water governance
strategies between countries, to understand cultural impacts
of hydrological hazard, and to take a transdisciplinary
approach to understanding that harnesses the multiple
sources of water knowledge (Section 5.3). The research of
all working groups is discussed in detail in the following
sections 3-6.

3 Understanding the hydrology of our changing
world

3.1 Hydrological data for the Anthropocene

3.1.1 Thinking big: benefits of large-scale hydrology

The aim of Panta Rhei to go beyond case studies, to find
generalized but locally-relevant descriptions of changes in the
global water cycle, requires a perspective that encompasses
many different hydrological environments. This challenge is
taken up by the Working Group on Large Sample Hydrology
(Gupta et al. 2014). Large samples improve understanding by
enabling more rigorous testing and comparison of competing
model hypotheses and structures; and improve the robustness
of generalizations, by allowing statistical analyses of model
performances and downweighting outliers. Large samples also
facilitate classification, regionalization and model transfer, by
testing them in a wide diversity of hydro-meteorological
contexts. Uncertainty estimates are improved when using
large samples, by establishing the predictive capabilities and
performance of hydrological models in a variety of hydro-
meteorological contexts.

An enabling technology for large sample hydrology must
be the availability of large, open datasets of hydrological
variables. The Large Sample Hydrology group aims to
gather, manage and share datasets, provide protocols to
assess data quality on large samples of watersheds and
share common standards for model assessment, comparison
and communication of results. The Panta Rhei organization
as a whole is investigating methods to share hydrological
data specifically about human impacts and changes. The
Working Group on Hydrologic Services and Hazards in
Multiple Ungauged Basins is investigating data require-
ments and methods for hydrological modelling on a con-
tinental scale, and contributing to the debate on how
diverse water science communities, such as catchment mod-
ellers, land surface modellers, operational hydrologists and
the water management community, can come together to
speed progress towards large-scale models of water systems
(Archfield et al. 2015).

The same group are testing whether physically- and statis-
tically-based methods can be combined for optimal estimates
of hydrological variables. This meshes with the ACCuRAcY
(Anthropogenic and Climate Controls on Water Availability)
Group, who analysed large-scale and continental variability of

precipitation and streamflows (see e.g. Niranjan Kumar and
Ouarda 2014, Ouarda et al. 2014, Salinas et al. 2014) and the
potential of geostatistical interpolation for continental predic-
tion of surface water availability in ungauged basins (Pugliese
et al. 2014). Both groups are interacting with the European
open water data initiative SWITCH-ON (http://www.project.
water-switch-on.eu/). These efforts all help to answer Science
Question 5, How can we advance our monitoring and data
analysis capabilities to predict and manage hydrological change?
Future analyses will combine deterministic and geostatistical
approaches to quantify changes in surface water availability
associated with global and societal change.

3.1.2 Data needs and solutions

Data-hungry hydrological methods are hampered by the
declining streamgauging networks in some developed coun-
tries, and their scarcity in developing and emerging countries
(Hannah et al. 2011). The ACCuRAcY group suggests several
responses to this challenge, including unconventional infor-
mation sources, such as short data series from deployable
monitoring equipment and historical/geomorphological
information, and the possibilities for blending observed data
with output from large-scale hydrological models. Advances
in remote sensing technologies for monitoring inland water
and land surface hydrological fluxes will play an important
role (see e.g. Domeneghetti et al. 2014, 2015).

Other nonconventional data, such as crowd-sourcing, qua-
litative, soft and proxy data from social analyses, will also be
relevant (Buytaert et al. 2014). Creative data-analysis techni-
ques that maximize information retrieval may elicit under-
standing of integrated systems that include human or
institutional agents. Data-driven methods, investigated by
the Data-Driven Hydrology Working Group, will play a
large role in understanding the complex interaction of natural
and human dynamics, due to our current limited understand-
ing of the system. We do not even know, yet, which variables
or drivers are the most significant to describe the behaviour
of the coupled systems and we do not know the exact form of
the relationships governing the most important feedbacks
(Troy et al. 2015Db).

In the absence of well-established hypotheses that inform
the model building process, development of socio-hydrologi-
cal models must come from the application of data-driven
methodologies (Sivapalan 2015) that may be applied first for
the adaptive selection and processing (for example using
dimension-reduction approaches recently applied in Big
Data analysis) of the most relevant data and then in the set-
up and refinement of the modelling framework.

3.2 Physics and predictability of the water cycle

Many demands on hydrologists involve simulations and
predictions of a physical hydrological system response,
from short-term flow forecasting to long-term analysis of
water management scenarios. In our world with highly
uncertain future climate, but with strong opportunities for
large-scale water governance, understanding of the abilities
and limits of hydrological predictability is critical (Bloschl
2006). In terrestrial hydrology, the term “predictability” is
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associated with “forecastability” or “effective predictability”
(Douville 2010), i.e. a system with an opportunity for a
skillful hydrological forecast. Recently however, predictabil-
ity has been analysed as an intrinsic property of the hydro-
logical system, unrelated to subjective factors (e.g. Shukla
et al. 2013, Lavers et al. 2014). These new conceptual
foundations of predictability link to system dynamics
research, and lead us to question the system behaviour
under changes.

The Working Group on Physics of Hydrological
Predictability is tackling the questions of how predictabil-
ity will change in the future, by understanding the inter-
connection, patterns and sources of predictability in
hydrological, weather and climate components of the
Earth system. Study of hydrological uncertainty caused
by atmospheric variability showed that a considerable
portion of the observed long-term trend in river runoff
characteristics was driven by factors external to the atmo-
sphere, i.e. sea surface temperature and sea ice concentra-
tion (Gelfan et al. 2015a, 2015b), and therefore indirect
links between climate and terrestrial hydrology via oceans
must be taken into account (e.g. Kingston et al. 2013).
Such studies are essential for quantifying the robustness of
hydrological models used in climate impact studies, under
challenging conditions of changing hydrological regime
(Thirel et al. 2015).

Detection and attribution of abrupt or gradual changes
in environmental measurements is essential if we are to
understand current system behaviour. For example, changes
in land use, land cover and climate intertwine to create
changes in runoff coefficients and water stress (Ayeni
et al. 2015). A trend can result from gradual or disruptive,
natural or human changes in the environment, whereas a
jump may result from sudden catastrophic natural events.
The Working Group on Predictions Under Change seeks to
develop strategies to detect and model inhomogeneities or
inconsistencies in time series data (see the review by
Peterson et al. 1998). Through analysis of time series varia-
bility and structural characteristics (jump, trend, random-
ness, intermittency, probability distribution function, etc.),
future projections or other uses of these data can incorpo-
rate our knowledge of environmental changes (e.g. Aksoy
et al. 2008b, Efstratiadis et al. 2015, the review by
Kundzewicz and Robson 2004). For example, streamflow
characteristics can help in understanding possible effects
of anthropogenic or natural short- or long-term changes.
Any change in the physical conditions of the gauging sys-
tem causes shifts in the time series. A major flood can cause
erosion or sedimentation at the gauging station, and hence
change the stage-discharge relationship and the corre-
sponding predicted discharge series (Tsakalias and
Koutsoyiannis 1999). Such information can be extracted
from the jump analysis of the streamflow record (Aksoy
et al. 2008a, Gedikli et al. 2010).

3.2.1 Anthropogenic changes in mountain areas

Predictions of hydrological systems are particularly challen-
ging in harsh or sparsely-populated environments where data
collection can be difficult. Mountains are “water towers” that

sustain Earth’s freshwater through snow, ice and lake
storages, permafrost and groundwater recharge, but hydro-
logical processes in mountainous regions are complex and
heterogeneous and our understanding of them is restricted
due to limited data. In regions with extensive glacier and
snow cover, the hydrological regime is highly susceptible to
climate change, and accurate predictions are essential because
the potential hydrological impacts extend well beyond the
mountains themselves (Beniston and Stoffel 2014, Khamis
et al. 2014). Mountainous regions must therefore be
addressed under Science Question 1 of Panta Rhei: What
are the key gaps in our understanding of hydrological change?

The Working Group on Mountain Hydrology has iden-
tified a series of targets to improve understanding and
prediction, and to inform water management in mountain
regions. Basic system knowledge is still missing in many
areas, e.g. quantifying the role of rainfall, snowmelt, glacier
melt, soil moisture and groundwater in the water balance,
but there are opportunities to integrate remote sensing
information, including gravity observations (e.g. Ragettli
et al. 2015), with targeted ground observations including
tracer studies to improve data quality and quantity in
mountainous regions (e.g. Gordon et al. 2015). Mountain
hydrological regimes are undergoing climate, land cover,
environmental and socio-economic changes, and these are
inextricably linked as, for example, changes in extreme
events and water availability impact on communities, and
conversely human management of water resources changes
the alpine water balance. Hence, there is a pressing need for
modelling tools to help us understand the changing
human-water system in mountain regions and their down-
stream landscapes (e.g. Coppola et al. 2014).

The Tibetan Plateau is a mountain region that, with its
huge buffering capacity, is the guardian of the Yangtze River
basin, protecting it against climatic fluctuations. The Yangtze
is the largest river in China and the third largest river in the
world, with 0.44 billion people in its watershed, contributing
to 35.5% of the GDP (gross domestic product) in China.
However, its water security is under threat from headwater
change in the Tibetan Plateau, including linked climate, cryo-
sphere, ecosystem and water cycle change. The Working
Group on Improving Hydrological Systems Knowledge has
chosen to study this system where knowledge of the mountain
water cycle is critical to modelling and predicting changes in
the middle and lower reaches of the Yangtze, including hydro-
power schemes, operation of the Three Gorges Dam, water
use in the Jianghan Plain agricultural area, and ecological
protection and flood control of the Poyang and Dongting
lakes. Complementing this study, the Working Group on
Modelling Hydrological Processes and Changes will study
the major Pearl River system in southern China, using physi-
cally-based hydrological modelling with the Liuxihe model to
map hydrological processes and changes.

3.2.2 Drivers of hydrological systems

A different lens through which to study the evolution and
predictability of hydrological regimes is as systems jointly
controlled by water and energy fluxes. These fluxes condition
the availability of water and the fluxes of sediment and
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nutrients/pollutants at multiple scales. Ground or remote
monitoring of energy fluxes in addition to water provide
another data source to trace past and current trends and
estimate future regimes in environments such as snow
regions (Pérez-Palazén 2015), arid environments (Odongo
et al. 2015) or “dehesas” (mixed agricultural-forestry environ-
ment) (Andreu et al. 2013). Energy fluxes may be considered
an example of an external driver on water systems, helping us
to answer Science Question 3, What are the boundaries of
coupled hydrological and societal systems? The Working
Group on Water and Energy Fluxes in a Changing
Environment aims to synthesize a wide variety of areas in
which changes in water and energy fluxes influence their
current and future regime. Their work includes snow model-
ling and monitoring in Mediterranean regions (Herrero and
Polo 2012, Pimentel et al. 2015), flood risk assessment (Egiien
et al. 2015), water consumption in cropped areas (Pardo et al.
2014, Romaguera et al. 2014), sediment transport in semi-arid
watersheds (Millares et al. 2014), environmental sustainability
(Wen et al. 2014), water resource management infrastructures
(Gémez-Beas et al. 2012), and adaptive actions assessment
(Polo et al. 2014).

It is important to include water quality and biogeochemistry
in our understanding of hydrological systems. Biogeochemistry
in aquatic ecosystems is of critical importance to global fresh-
water sustainability, food and energy security and aquatic
biodiversity. The aquatic systems of interest include receiving
waters that serve human societies, such as rivers, lakes, reser-
voirs, estuaries and coastal seas. Humans directly alter the
aquatic biogeochemical cycles by replacing native vegetation
with agricultural crops, applying fertilizers and discharging
untreated sewage, and indirectly by altering the water cycle
(e.g. through dams and water withdrawals), impacting water
quality, and through climate change. The Working Group on
Changing Biogeochemistry of Aquatic Systems in the
Anthropocene is studying the dynamics of coupled hydrologi-
cal and biogeochemical processes under natural and human-
induced changes, and developing improved models that can
serve as tools for sustainable management of water quality and
biodiversity in aquatic systems.

3.2.3 Predictability in socio-hydrology

It is increasingly recognized that water systems are not only
impacted on by humans, but human societies also adapt in
response to changes in water systems at different time scales

(Sivapalan 2015). To achieve predictive insight into coupled
human-water systems over a long period of time, these bi-
directional feedbacks must be accounted for. Socio-hydrology
is the study of dynamics and co-evolution of coupled human-
water systems (Troy et al. 2015a). The Working Group on
Socio-Hydrologic Modelling and Synthesis is addressing fun-
damental challenges in understanding socio-hydrological sys-
tems. These include understanding the organizing principles
that characterize the behaviour of coupled human-water
systems, and go beyond site-specific studies.

The Socio-Hydrology Working Group is addressing mul-
tiple challenges in understanding coupled human-water sys-
tems. Researchers have characterized and modelled the long-
term dynamics and co-evolution in generalizable terms, such
as social memory of floods or water scarcity and community
sensitivity to the environment (Di Baldassarre et al. 2013a,
2013b, Zlinszky and Timar 2013, Elshafei et al. 2014, Liu
et al. 2014). They have examined the role of human agency,
norms and institutions in shaping societal responses (Ertsen
et al. 2013, Wescoat 2013) and the inherent trade-offs
between alternative trajectories (Scott et al. 2014). The work-
ing group has also addressed philosophical questions about
the kinds of predictive insight achievable given the uncer-
tainty of social futures and appropriate role of researchers
studying such systems (Troy et al. 2015b, Lane 2014). They
ask whether all socio-hydrological research must be
embedded in stakeholder driven processes, and whether
socio-hydrologists can truly be “impartial observers”, or,
whether by modelling the coupled system, they are also
unwittingly “social engineers” who influence attitudes and
social behaviours through their work.

4 Global interactions of society and water
4.1 Hydrology, society and ecology

As interactions of societies and hydrological systems change
and intensify over time, it is important to understand their
interactions in order to better predict the sustainability of
both. Examples of a variety of human impacts on hydrology
from New Zealand are shown in Fig. 2, where, despite low
population densities, the hydrological cycle is significantly
modified in many regions. The Working Group on
Integrating History, Social Conflicts and Hydrology: From
Semi-pristine to Highly Modified Hydrological Systems
addresses the question of sustainability of hydrology-society

Figure 2. Human impacts on hydrology; examples from New Zealand: (a) water spilling over the Roxburgh Dam on the Clutha River; (b) irrigation channel near
Methven, Canterbury; (c) centre-pivot irrigator on dairy pasture, Canterbury; and (d) cattle on wetland area, Wairarapa. Credit: NIWA Image Library, photographers

Dave Allen, James Sukias.



Downloaded by [84.241.199.33] at 07:24 17 April 2016

HYDROLOGICAL SCIENCES JOURNAL - JOURNAL DES SCIENCES HYDROLOGIQUES ‘ 7

interactions, initially using case studies of conflicting water-
use scenarios in Mexico. Their first example is the Nejapa
Valley in Oaxaca, a semi-pristine hydrological system where
little industrial activity takes place and human settlements
have been stable for centuries. Adding archaeological prints
to hydrological simulations, they found that hydrology has
been a controlling factor in human growth (Rosales-Sierra
and Garcia-Govea 2014). Today the Nejapa Valley faces heavy
mining exploitation with modern industrial technology.
Research questions ask how mining water needs will be
balanced against the needs of existing, stable human commu-
nities who are often opposed to the industrial activities
(Aquino-Centeno 2012), and explores the role of legislation
and corruption in this relationship (Rosales-Sierra 2007).

Not all societal-hydrological interactions are exploitative.
Since the start of human history, efforts have been made to
manage and harvest water resources in a sustainable way to
maintain ecosystem function (Antoniou et al. 2014, Mays
2014). With insights into ecosystem function, humans also
became aware that their anthropogenic activities can have
positive and negative impacts on ecosystem services (e.g.
Malmgqvist and Rundle 2002). A significant challenge for
geoscience is to establish a socio-ecological system approach
that brings in a holistic understanding of how these systems
are interlinked and how their sustainability can be better
maintained (Ostrom 2009). This can be illustrated by numer-
ous current examples: e.g. sophisticated field investigations
reveal that deep water mixing in Lake Issyk-Kul, Kirgizstan, is
intensively distributing pollutants in the entire lake (Peeters
et al. 2002). Although fishery is an important sector in the
region, the local awareness of the importance of water quality
is low. In another example, in Switzerland, strict water pro-
tection laws led to oligotrophication of alpine lakes, reducing
fishing vyields (Finger et al. 2007). While local fishermen
argued that maintaining a local fishery is more ecologically
sustainable than importing fish, their calls for artificial lake
fertilization were rejected and were not accepted by the wider
community.

Projected climate changes add a further layer of complex-
ity to the socio-ecological system. Predictions of water avail-
ability in the European Alps reveal that water may become
scarce during summer months as glaciers vanish (Beniston
et al. 2011, Finger et al. 2012). Financially the hydropower
sector is the most important water user. However, other
stakeholders, including farmers and the tourism sectors will
all be competing for the decreasing resources. Panta Rhei
members are investigating how different environmental-
flow policies may affect hydropower production potential
and fluvial habitat suitability at the regional scale. In all the
cases described, a socio-ecological system analysis could give
added value to the geoscience results by identifying solutions
that are both ecological and socially acceptable. Here, we
directly tackle Science Question 3, What are the boundaries
of coupled hydrological and societal systems?, as we seek to
understand how ecology could be treated as a boundary
condition to the socio-hydrological system, or as an integral
component. The Working Group on Resilience-based
Management of Natural Resources: The Fundamental Role
of Water and Soil in Functional Ecosystems is using a

representative case study in Iceland to investigate methods
for embedding water resources research in socio-ecological
systems.

4.2 Water resources infrastructure and control

Natural systems are often remarkably resilient thanks to their
built-in feedback loops. Mankind’s adaptation of those systems
to the needs of society to a large extent relies on the same
mechanism for the realization of desired behaviour. However,
as society places more demands on resources, local systems are
linked into composite systems that cover larger areas. One
reservoir supplying water for local irrigation and household
water can become part of a group of reservoirs and be called
upon to take on additional roles in that context. Local measures
to cope with low or high river discharges may have regional
consequences and need to be integrated in a system along the
entire river. In this way new feedback effects are created and
systems become more complex and may acquire new equilibria
and new behaviours. The Working Group on Natural and
Man-made Control Systems in Water Resources is investigating
the use of control theory concepts to study the composite
system of the hydrological cycle interacting with global weather
and human society. This point of view centres on the interac-
tion of the dynamical system with natural and artificial control
mechanisms.

One of the most conspicuous ways that societies control
water resources is through construction of large dams. Large
dams play a vital role in our socio-economic development, but
there are also increasing concerns about their negative impacts
on our environment and social fabric (Tortajada 2015). Intense
pressures from high water consumption rates and multi-year
drought can lead to severe declines in dam water storage, such
as in the American Southwest (Fig. 3). Benefit-cost analysis of
large dams is challenging, due to the absence of accurate mod-
els, lack of data, political factors and socio-cultural sensitivities,
among others (Koutsoyiannis 2011). The Working Group on
Large Dams, Society, and Environment is reviewing and col-
lecting data on such hydrologic, ecologic and socio-economic
factors, and analysing interactions within the dam-population-
water—food-energy system (Chen et al. 2015). This work
requires new approaches for analysis of water, ecologic and
socio-economic data in combination, necessarily bringing
together multiple experts. The long-term aim is to formulate
scientifically sound, practically feasible and socially acceptable
guidelines for dam construction and management.

4.3 Human impacts on global water use

4.3.1 Water and energy footprints

Human society is thirsty for both water and energy, and the
two are intimately interlinked. Not only does energy have a
water footprint, but water also has an energy footprint.
Society faces dual demands to cope with water scarcity, and
at the same time to reduce greenhouse gas emissions, posing a
challenge for water resources management of how to inte-
grate the embedded energy use (Rothausen and Conway
2011). While some work has been done on implications of
energy use for irrigation agriculture, especially in South Asia
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Figure 3. MODIS satellite images of Lake Powell, Colorado, USA, behind the Glen Canyon Dam, show severe declines in water level between (a) 1999 and (b) 2015

due to prolonged drought and high water withdrawals. Image credit: NASA.

(e.g. Malik 2002, Shah 2009), understanding and quantifying
complex linkages between water and energy systems in cities
is still in its infancy (Kenway et al. 2011, Nair et al. 2014). In
particular, the end-use of water that is the most energy
intensive water-sector process (Fidar et al. 2010, Perrone
et al. 2011) is often neglected in water management and
policy, and joint water—energy studies to address this issue
are of high importance (De Stercke et al. 2015). The Working
Group on Thirsty Future: Energy and Food Impacts on Water
tackles this emerging issue.

Conversely, human activities and energy use have a water
footprint. Water not only plays a key role in serving societies
and economies, but also constrains development, with impor-
tant implications for best practice water governance (Savenije
et al. 2014). These implications are being investigated by the
Working Group on Comparative Water Footprint Studies.
Integrating water considerations into energy policies is essen-
tial to ensure that water footprints do not increase as a result
of policies to reduce humanity’s carbon footprint (Mekonnen
et al. 2015a). Demand for hydropower is increasing, yet the
water footprints of reservoirs are poorly understood. Liu et al.
(2016) calculated reservoir water footprints (freshwater that
evaporates from reservoirs) in China based on 875 represen-
tative reservoirs. The footprint totalled 27.9 x 10° m” per year,
or 22% of China’s total annual water consumption. Ignoring
the reservoir water footprint seriously underestimates human
water appropriation. The reservoir water footprint associated
with industrial, domestic and agricultural water footprints
caused water scarcity in six of the 10 major Chinese river
basins for 2 to 12 months annually.

The development of international trade will strongly influ-
ence future spatial patterns of water consumption and pollu-
tion, as shown for example by Flachsbarth et al. (2015) in a
case study for Latin America and the Caribbean. Mekonnen
et al. (2015b) show, for the same region, how substantial use
of land and water resources for producing export crops like
soy bean goes hand in hand with significant levels of domestic
undernourishment. Semi-arid countries, such as in North
Africa and the Middle East, increasingly externalize their
water footprint of consumption, thus increasing their depen-
dency on foreign water resources (Schyns and Hoekstra 2014,
Antonelli and Tamea 2015). Feeding all people on the planet
under existing water constraints will require better water
supply and demand management, but in the end also the
adoption of diets that are less water-intensive (Vanham
et al. 2013). Research shows a significant overlap between

countries that receive food aid and those that face practices
of land and water grabbing (Jackson et al. 2015). Problems of
water scarcity and pollution intricately relate to energy, agri-
culture, trade, aid and consumption patterns, requiring gov-
ernments to integrate water concerns into agriculture and
trade policy domains, and companies and investors to inte-
grate water into their business model. Even though compa-
nies increasingly adopt strategies of water stewardship
(Hoekstra 2014a), recent research shows that overall trans-
parency over water use and pollution, particularly with
respect to supply chains, is still poor (Linneman et al. 2015).

4.3.2 Water redistribution in space and time

Spatial resolution is known to affect the assessment of water
footprints and impacts related to crop production. However,
the temporal aspects of crop cultivation and the related
impacts have been neglected in global analyses. Such aspects
are important because different crops can shift irrigation
water consumption within a year, increasing or decreasing
the related water stress. Consequently, an annual assessment
might be misleading regarding crop choices within and
among different regions. Hoekstra et al. (2012) calculated
monthly water scarcity for the world’s major river basins,
showing that half of the basins, inhabited by 2.7 billion
people, are facing severe water scarcity during at least one
month of the year. Similarly, Pfister and Bayer (2014) devel-
oped a monthly water stress index for more than 11 000
watersheds globally. Irrigation water consumption for 160
crop groups was calculated on a monthly basis and on a
high spatial resolution (10 km), estimating global irrigation
water consumption in the year 2000 at 1210 x 10° m’.
Regional water stress changed considerably when using a
monthly, rather than annual or longer, time scale. Similarly,
hydroclimatic variability has been shown to affect “green” and
“blue” water availability and demand in global agriculture,
and, therefore, the ability of a region to produce sufficient
calories (Kummu et al. 2014). Their analysis showed that
more than half of the 2.6 billion people living under water
scarcity would have to rely on international trade to reach the
reference diet.

Water can be spatially redistributed, in physical terms
through water transfer projects and virtually through embo-
died water, for the production of traded products. Zhao et al.
(2015) explored whether such water redistributions can help
mitigate water stress in China by integrating an economic
model with water-use data. The results show that physical
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water flows in major water transfer projects amounted to
4.5% of national water supply, whereas virtual water flows
accounted for 35% in 2007. The analysis shows that physical
and virtual water flows do not play a major role in mitigating
water stress in the water-receiving regions but do exacerbate
water stress for the water-exporting regions.

4.3.3 Urban water flows

Cities drive water use through their economic power and
connections with other regions, and create both virtual and
physical water flows through their consumption and produc-
tion of goods and services. The Working Group on Water
Footprint of Cities is attempting to quantify and identify the
potential role played by urban virtual water flows, which
should be considered in urban water planning and manage-
ment, and must by its nature be attempted alongside the
multitude of urban stakeholders. Paterson et al. (2015) com-
pared different methods to assess virtual water flows. They
identified research needs to develop new methods for urban
water footprint analysis (Rushforth and Ruddell 2015), and to
implement Embedded Resource Accounting in cities (Ruddell
et al. 2014). New concepts such as urban metabolism studies
may help to account for direct water uses in cities. Urban
areas include many different types of boundaries, which exert
a control on both virtual and physical flows. Understanding
the influence of different boundaries on urban flows repre-
sents an important area of research.

Physical urban-water systems comprise three main sub-
systems: water supply, wastewater treatment and stormwater
management; the last of which is being studied by the
Evolving Urban Water Systems Working Group. Their
emphasis is on stormwater management as a coupled nat-
ural-human system, extending the traditional narrower focus
on impact reduction, and dealing with critical societal issues
such as protection against floods and the preservation of
water quality and biodiversity. In this context, Woodward
et al. (2014) examined the concentration of oestrogens in
soils affected by treated wastewater irrigation. They found
that time of sampling, land cover and irrigation can affect
oestrogen concentrations in soils, resulting in levels that
exceed natural background and require improvements in
management practices.

Urban areas are characterized by complex terrain and inter-
actions of natural and built flow pathways and channels, pro-
viding a challenge to many river and floodplain models. Recent
advances include work by Kesserwani and Liang (2015), who
implemented and examined the required complexity of differ-
ent state-of-the-art numerical schemes for 2D flood simulation
in complex terrain, including urbanized areas. Mejia et al.
(2014, 2015) implemented a stochastic model of streamflow
for urbanized basins to examine changes in flow regime due to
conventional stormwater management, as well as urban
growth, and Rossel et al. (2014) examined the scaling of
basin-level dispersion mechanisms in an urban context.
These last three studies emphasize emergent urban hydrologi-
cal features that can be used to analyse and compare the
behaviour of urban basins across regions. A key aim driving
this research is to better understand and characterize the
impact trajectories and impact hotspots associated with the

spatio-temporal evolution of urban stormwater systems, both
within and between cities. This could serve to provide a scien-
tific basis for advancing engineering design and stormwater
management in cities. It entails knowing and characterizing
the way cities, their water infrastructure, landscape, soils,
population and land use, have evolved in space and time.

5 Water governance, decision-making and
uncertainty: global lessons

Achieving sustainability in water consumption and supply,
while enabling continued development, is a global challenge.
Hydro-meteorological hazards also have far-reaching implica-
tions for water security, with political, social, economic and
environmental consequences. Both factors emphasize the
need to use state-of-the-art knowledge in decision-making
processes for water governance.

5.1 Changes in water governance

Assessment of changes in water supply and resources, econ-
omy and water policy is necessary for sustainable water man-
agement, good living standards and environmental
stewardship. The Working Group on Sustainable Water
Supply in an Urban Change is comparing changes in the
economy and water policy since the 1980s for a number of
countries, which differ in size, environmental conditions,
population trends and water demands. They found the largest
growth in water use in India: along with China it leads global
water consumption. In contrast, a decrease caused by the
changes after the collapse of the Soviet Union has been
observed in Russia (Bibikova 2011). Iran, which has 10
times less territory and half the population of Russia, con-
sumes more water than the latter and has doubled water
withdrawal since 1980. However, the renewable water
resources of Iran are 34 times smaller (Bibikova et al. 2014)
and, in spite of the growing population, domestic water
supply has decreased by 9%, leading to water stress.

Water is used most effectively (i.e. highest ratio of GDP to
consumed water) in developed countries with a limited agricul-
tural water supply. However this indicator has recently increased
considerably for China (Koronkevich et al. 2013). The quality of
water resources and their management is defined by countries’
water law and policy. Although Russia, China and Iran have
different approaches, water remains the state’s property in all
these countries (Caponera 1992, Naff 2009). Water policy in the
EU is moving towards establishing a comprehensive water law
to control creation, allocation and distribution of water rights
(Goldfarb 1988). The most complicated situation was found in
India, where the existing structure of community access to water
was replaced by granting ownership rights to the riparian land-
owner. There is ambiguity and inconsistency between the rights
of the people and the rights of the state to use water resources,
which makes governance difficult (Goldfarb 1988).

5.2 Uncertainty in risk and resources

Water governance measures for flood risk reduction are typi-
cally designed to ensure both better flood management and



Downloaded by [84.241.199.33] at 07:24 17 April 2016

10 H. MCMILLAN ET AL.

an increase in infrastructure resilience. However, the assess-
ment of hydro-meteorological risk must take into account
uncertainty (Rodriguez-Rincén et al. 2015). Numerical tools
and models that represent reality in an incomplete manner
incorporate errors that can interact and aggregate to compro-
mise prediction reliability. Moreover, extreme hydro-meteor-
ological events are dynamic over a range of time scales, due to
climate variability and socio-economic changes, among
others, which further increases the uncertainty in the projec-
tions. Therefore, the Working Group on Hydro-meteorologi-
cal Extremes: Decision-making in an Uncertain Environment
is examining how this incomplete science can be used for
better decision-making in the face of inevitable uncertainties
in both our knowledge and the future climate. They aim to
develop new, robust approaches to quantify uncertainty in
data and scenarios. The magnitude of registered damages and
losses in recent events around the world reveal the urgency of
doing so even under a context of limited predictability.
Sensitivity analysis and uncertainty estimation are becoming
an increasingly important and expected part of both modelling
and management strategies (e.g. Hall 2013, Baroni and
Tarantola 2014, Pianosi et al. 2015). Panta Rhei has an explicit
aim to improve uncertainty estimation, in Science Question 4,
How can we use improved knowledge of coupled hydrological-
social systems to improve model predictions, including estimation
of predictive uncertainty and assessment of predictability? In this
context, more importance is being placed on recognizing dif-
ferent types of uncertainty (Refsgaard et al. 2013). We can
distinguish between uncertainties arising from random chance
(“aleatory” uncertainty), and those arising from a lack of knowl-
edge about the phenomenon being considered, the epistemic
uncertainty. Concepts such as ambiguity, reliability, vagueness,
fuzziness, greyness, inconsistency and surprise that are not
easily represented as probabilities may be considered aspects
of epistemic uncertainty. The Working Group on Epistemic
Uncertainties is developing methods to characterize and quan-
tify these uncertainties, with a focus on assessing what we think
we know by improved analysis of the observation process
(McMillan and Westerberg 2015) and its impacts on hydrolo-
gical metrics (Westerberg and McMillan 2015), or through
more considered methods of comparison between model and
data (e.g. Beven and Smith 2015, Nearing and Gupta 2015).
Others (e.g. Dottori et al. 2013, Serinaldi 2015) have considered
the appropriateness of the information that is provided by
hydrologists to decision makers. Initial steps have been made

ﬁociety

to characterize the uncertainty in coupled socio-hydrological
systems (Viglione et al. 2014). The uncertainty in the anthro-
pogenic forcing of such coupled systems is significant; how
significant when compared to the potential for epistemic uncer-
tainty in forecasts of future hydrological boundary conditions
(e.g. in precipitation: Chen et al. 2013, Ruffault et al. 2014)
remains an open question.

5.3 Many sources of water knowledge

Most socio-hydrological systems exhibit natural variability or
anthropogenically induced changes (Koutsoyiannis 2013, Hirsch
and Archfield 2015, Marani and Zanetti 2015). This provides
multiple challenges in decision making and has led to the
development of alternate decision making processes (Fuller
2011, Korteling et al. 2013, Singh et al. 2014). For example, the
Thirsty Future Working Group is examining the challenge for
urban infrastructure management of multiple water system fail-
ures during flood events under conditions of climate and envir-
onmental change and population growth (Brown 2010, Field
2014). Monitoring and modelling of operational water systems
during normal and extreme conditions, their cost, energy and
resource use, and long-term sustainability is necessary to prior-
itize water management issues, and map viable operational and
adaptation measures. Rather than relying solely on engineering
solutions, a participatory approach to research through colla-
boration with policy regulators and multiple stakeholders will
ensure that the framework focuses on both solutions and
impacts. This research addresses the Panta Rhei Science
Question 6, How can we support societies to adapt to changing
conditions by considering the uncertainties and feedbacks between
natural and human-induced hydrological changes?

Water knowledge is produced widely within society, across
certified disciplinary experts and non-certified expert stake-
holders and citizens (Lane et al. 2011, Krueger et al. 2012).
The Transdisciplinarity Working Group aims to scrutinize
these knowledge practices and enable them to work together
productively for a more complete understanding of human-
water relations and the design of appropriate interventions
(Krueger et al. 2015; Fig. 4). This means going beyond state-
of-the-art water research between and across traditional disci-
plines, which has failed to integrate disciplinary paradigms
(Bracken and Oughton 2006), and where understanding has
thus remained partial and interventions conflicting. The social
sciences in particular should not be seen in a service role

\ Studying hydrological and social systems as coupled

Studying (social-)hydrological systems together with
| society

social-hydrological systems
Hydrology Studying (social-)hydrological systems to achieve
results useful for society

Studying how (social-)hydrological practice reflects

\, and reproduces social context ((social-)hydrology
K within society)

Figure 4. Four different interpretations of the study of hydrology and society.
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subordinate to the natural sciences, as is frequently the case
(Strang 2009). Research practices embed and are embedded in
particular social contexts (Budds 2009, Bouleau 2014, Lane
2014, Linton 2014). We need more empirical evidence to
understand how culture, politics and economics shape water
research and vice versa, and bring alternative knowledge and
implications into water politics where they were not previously
considered (Cook et al. 2013, Fernandez et al 2014).
Transdisciplinary research where certified and non-certified
experts challenge each other agonistically counters potential
lock-in to particular water policies and technologies that may
be inequitable, unsustainable or unacceptable (Maynard 2015).

6 Global hydrological challenges in the
Anthropocene

6.1 Global water scarcity

6.1.1 Global water crisis
The scientific community is already debating the global water
crisis (Sivakumar 2011, Srinivasan et al. 2012, IAHS 2015),
and uses the term “water emergency” explicitly when refer-
ring to food-water security for specific areas of the world.
With rapid socio-economic development, water scarcity has
become a bottleneck for sustainable development in more
countries and regions of the world (Oki and Kanae 2006,
Vorosmarty et al. 2010). Water scarcity occurs on many
different scales ranging from global to river basin and muni-
cipality. Its severity is highly dynamic, depending on contin-
uous shifts of consumption patterns, socio-economic
development, increasing water pollution and climate change.
There are still many shortcomings of previous water scar-
city indicators. First, they are usually limited to water quan-
tity (mainly surface and groundwater, or the “blue” water, but
rarely soil water, or “green” water), neglecting the effects of
water quality on water scarcity. Second, they are mainly
focused on human water use, but ignore the environmental
flow requirements. Third, still many studies focus on annual
averages and hence hide the very important temporal and
spatial variations of water resources and uses (Savenije 2000).
Members of the Working Group on Water Scarcity
Assessment: Methodology and Application developed a sim-
ple regional approach for assessing water scarcity considering
both water quantity and quality, making use of easily obtain-
able data (Zeng et al. 2013). This approach adopted the
commonly used criticality ratio method (Vérésmarty et al.
2000) to assess quantity-induced water scarcity, and used grey
water footprint, an indicator that quantifies the effects of
water pollution to water resources in a volumetric way, to
assess quality-induced water scarcity. The method assumed
that 80% of the blue water resources should be maintained for
environmental flows. Such an assumption may not be realistic
and may be an overestimation of environmental flow require-
ments (EFR). Given this, a quantity-quality-EFR (QQE)
approach is being developed to explicitly consider environ-
mental flow requirements in the water scarcity assessment
(Liu et al. 2016). Such an approach, combined with the
nutrient flow assessment for pollutants (Liu et al. 2010),

could effectively assess water scarcity by explicitly considering
quantity, quality and environmental flows.

An example of water scarcity caused by water quality is
the Mexico-Mezquital coupled hydrological systems being
studied by the Working Group on Integrating History,
Social Conflicts and Hydrology: From Semi-pristine to
Highly Modified Hydrological Systems. Many centuries of
human settlements have depleted the Mexico aquifer and
industrial activity continues to drive population growth.
Untreated drainage from Mexico Valley has been conducted
artificially to the Mezquital Valley, changing Mezquital
characteristics from a clean-arid to a polluted-productive
agricultural valley (Jiménez and Chavez 2004). Mexico City
is already in water crisis and Mezquital Valley may soon
follow, as growing industry and agriculture deplete clean
water from the aquifer, and Mexico City seeks to solve
part of its water needs by recycling 10 m’/s from
Mezquital Valley (Conagua 2012).

6.1.2 Climate change impact on water scarcity

A robust assessment of water scarcity considering both cli-
matic and socio-economic changes is vital for policy makers
at the river basin level. By understanding how these two
sources of change interact, we address Science Question 2,
How do changes in hydrological systems interact with, and
feedback to, natural and social systems driven by hydrological
processes? Gain and Wada (2014) analysed future water scar-
city of the Brahmaputra basin, comparing water demand and
availability on monthly, seasonal and yearly scales. They
showed that it is important to estimate water demand in
terms of both water withdrawals and consumptive water
use, and to assess groundwater recharge affected by climate
change together with future demands for groundwater
abstraction.

Schewe et al. (2014) used a large ensemble of global hydro-
logical models (GHMs) forced by five global climate models
and the latest greenhouse-gas concentration scenarios
(Representative Concentration Pathways) to synthesize cur-
rent knowledge about climate change impacts on water
resources and water scarcity. The results show that climate
change will exacerbate regional and global water scarcity. The
ensemble average projects that a global warming of 2°C above
present temperatures will confront an additional 15% of the
global population with a severe decrease in water resources
and will increase the number of people living under absolute
water scarcity (<500 m’ per capita per year) by another 40%
compared with the effect of population growth alone.

6.2 Hydrological extremes: a global issue in the
Anthropocene

6.2.1 Attribution of droughts and floods

Droughts and floods are caused by interactions between weather
anomalies, the terrestrial ecosystem and the human environ-
ment. Drought is differentiated from water scarcity: drought is
a (temporary) lack of water compared to normal conditions,
whereas water scarcity is a (long-term) lack of water compared
to desired conditions. Drought and flood risks emerge from the
exposure of humans and assets during extreme hydrological
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events (e.g. Merz et al. 2010). Therefore, changes in drought and
flood risks or costs can result from multiple factors, including
increases in exposed assets, climate change and human inter-
ventions in river systems and catchments (Vorogushyn and
Merz 2013, Di Baldassare et al. 2013a). Thus, detection and
attribution of past changes in drought and flood risk is challen-
ging, particularly due to the complex interaction of physical and
socio-economic processes and their large spatial and temporal
heterogeneity. The question of whether drought and flood risk
increase over time, and if so, why, is very relevant for policy
response in terms of risk management and adaptation strategies
(Bouwer 2011).

Hydrological drought research typically focuses on under-
standing the natural processes underlying water availability
(Van Loon 2015). In recent years progress has been made on
the development and testing of drought indices (Bloomfield
and Marchant 2013, Stagge et al. 2015), the influence of
evapotranspiration (Teuling et al. 2013), snow (Staudinger
et al. 2014) and geology (Stoelzle et al. 2014) on drought
severity, drought modelling and forecasting in Africa
(Sheffield et al. 2014, Trambauer et al. 2015), and effects of
climate change on drought (Prudhomme et al. 2014, Wanders
et al. 2015). The Working Group on Drought in the
Anthropocene is aiming to broaden that view and start to
understand how humans influence drought, and vice versa
(Van Loon et al. 2016.; Fig. 5). Up to now the working group
has focused on modelling and quantification of human activ-
ities on drought occurrence and severity (e.g. Van Dijk et al.
2013, Van Loon and Van Lanen 2013, Wanders and Wada
2015). To fully incorporate human processes, a framework is
needed that includes human drivers, modifiers, impacts, feed-
backs and the changing baseline of drought in the
Anthropocene. Examples of human responses to drought,
which induce feedbacks in the system, include reductions in
water use, changes in agricultural practices, increases in
groundwater extraction, and building storage or water trans-
fer infrastructure. Research done within this framework needs
to combine qualitative and quantitative data and methods to
answer research questions related to drought in the
Anthropocene in a more holistic way by explicitly including
interactions between humans and the hydrological cycle. The
drought community can learn from flood research, which is
much further developed in integrating human and natural
processes, in terms of understanding, quantification and
prediction.

At the opposite hydrological extreme, flood damage in
Europe and worldwide has increased considerably in recent
decades, particularly due to an on-going accumulation of
people and economic activities in risk-prone areas (Barredo

2009, Merz et al. 2012). The Working Group on Changes in
Flood Risk aims to understand, quantify and model the links
between physical and socio-economic drivers and changes in
flood risk, and explore adaptation pathways. Their first activ-
ities identified and analysed potential drivers for changes in
vulnerability, specifically susceptibility. Significant temporal
changes in private precautionary measures, mainly triggered
by flood experience, were quantified in German case studies
(Kreibich et al. 2011, Kienzler et al. 2015). Current work aims
to identify the main factors determining event-level flood
damages, based on a European-wide collection of case studies.

6.2.2 Physical drivers of flood changes

In 2013, severe floods occurred in Mexico when two tropical
storms converged, culminating in serious damage and wide-
spread persistent flooding (Pedrozo-Acuia et al. 2014). This
unprecedented event followed extreme flood events over the
last decade caused by record-breaking precipitation across
central Europe in 2002 and 2013 (Becker and Griinewald
2003, Merz et al. 2014, Schréter et al. 2015), the UK (Slingo
et al. 2014), Pakistan (Webster et al. 2011) and Australia (van
den Honert and McAneney 2011).

The aim of the Working Group on Understanding Flood
Changes is to understand the physical processes relating
floods to their drivers to understand how and why floods
have changed and may change in the future. A result of this
work will be to understand the sensitivity of floods to differ-
ent changes in their drivers, and the uncertainty in predic-
tions. The group has reviewed the state of the art of
understanding flood regime changes in Europe (Hall et al.
2014). They identified the need for a synthesis of (1) data-
based detection methods, focusing on long duration records
and flood-rich and flood-poor periods, and (2) modelling
methods for flood change attribution, for future flood change
scenarios that cover the full uncertainty range, and low-
dimensional models that account for feedbacks between the
natural and human systems.

6.2.3 Cultural impacts of floods

Cultural heritage is often at risk in flood events. Cultural
heritage includes tangible structures: buildings, monuments,
documents and artefacts, but also aspects of environment and
landscape that are considered cultural landmarks. Protection
of this heritage must consider hazard assessment, vulnerabil-
ity and exposure estimation, and mitigation actions that can
take place before, during or after the event. The Working
Group on Floods in Historical Cities is developing an inte-
grated system for the management of flood risk for cultural
heritage sites, and is establishing a corresponding information

o natural
1
7
x-——=4=1— drought threshold
M. J—1— natural + human (observed)

= climate-induced drought
= human-induced drought

groundwater level
/ river discharge

time (years)

= human-modified drought

Figure 5. Drought types: climate-induced drought, human-induced drought, modified drought. Reproduced from Van Loon et al. (2016) with permission.
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platform that helps to identify environmentally friendly solu-
tions. The group aims to support engineering design and to
provide tools to decision makers. This necessarily involves a
wide range of disciplines from geology, geotechnical engi-
neering, structural engineering, surveying engineering, com-
puter science and hydrology. As with so many of the Panta
Rhei initiatives, success will only be achieved through includ-
ing the expertise and opinions of a wide range of scientists
and stakeholders.

7 Discussion and conclusion

As the science community contributes to water governance
decisions, we must recognize that water knowledge is inher-
ently uncertain, and comes in many forms and from many
people. This paper itself contains multiple viewpoints on how
to study the changing socio-hydrological system, and there is
potential for conflict as different working groups approach
common aims. For example, the theme of water and energy is
approached in terms of drivers of the physical system, and
also in terms of common footprints of water and energy. The
theme of people as decision makers is approached in terms of
socio-hydrology, as a poorly understood dynamic system; in
terms of water governance, as an outcome of political and
economic climates; and in terms of transdisciplinarity, as a
sphere of understanding created by multiple stakeholders. We
hope that this paper specifically, and Panta Rhei as a whole,
will lead to new and productive dialogues on these questions.

Concern about a global water crisis has focused attention
on many developing and emerging countries, which are suf-
fering scarcity in water quantity and quality. These challenges
reinforce the need to escape from a traditional bias in science
funding towards studying water resources in developed coun-
tries. A future challenge for the hydrological community is to
bring together knowledge from scientists around the globe,
such as in the recent advances in hydrological research in
Africa (Hughes et al. 2015), and to understand if and how
water knowledge can be exchanged between countries. In this
light, during the 26th IUGG (International Union of Geodesy
and Geophysics) General Assembly in Prague, a new Task
Force for Representing Developing Countries was created
within TAHS, which will collaborate closely with Panta Rhei.

Panta Rhei will work with the IAHS Education Working
Group to design a mentoring network for young scientists,
particularly in developing countries, to maintain and
strengthen links with established hydrologists. Given the
risks posed by environmental change to all sectors of
water use and management (D6ll 2015), the future demand
for skilled hydrological professionals can only increase.
These professionals will need new and evolving skill sets
to match the unknown hydrological issues of the future.
Some aspects of hydrological research, such as transbound-
ary issues, are likely to gain much greater importance in the
future (Douven et al. 2012). The breadth of potential sub-
ject areas means that educators must reach beyond their
personal experience and knowledge of hydrology, and place
more reliance on the wider hydrological community to

educate hydrology students (Wagener et al. 2012).
Alongside traditional transfer of subject-based expertise,
students must learn interdisciplinary skills, such as pro-
blem-solving techniques and methods for stakeholder
engagement. Thus, the lecturer moves from an “expert” to
a “facilitator” role (Pathirana et al. 2012), and student-
centred, active learning becomes more prominent
(Thompson et al. 2012, Lyon et al. 2013). As part of this,
new technologies and tools, such as film (Let’s Talk About
Water 2015) and access to real-time data (McDonald et al.
2015), will enable hydrology educators to enrich the learn-
ing experience.

In conclusion, there are many challenges associated with
understanding and predicting change in hydrology and
society, and empowering communities to mitigate and adapt
to those changes. Such challenges can only be met by the
concerted and joint efforts of hydrologists and affected socie-
ties around the world.
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