
A
r

J
a

b

c

a

A
R
R
A
A

K
E
F
U

1

b
t
r
n
i
p
s
f
e
t
m
m
c
(
e
u
t
r

1

0
d

Ecological Modelling 221 (2010) 1245–1251

Contents lists available at ScienceDirect

Ecological Modelling

journa l homepage: www.e lsev ier .com/ locate /eco lmodel

ssessment of uncertainties in expert knowledge, illustrated in fuzzy
ule-based models

.A.E.B. Janssena,∗, M.S. Krola, R.M.J. Schielena,b, A.Y. Hoekstraa, J.-L. de Koka,c

University of Twente, Water Management and Engineering Group, Enschede, The Netherlands
Ministry of Transport, Public Works and Water Management, Waterdienst, Lelystad, The Netherlands
VITO, Flemish Institute for Technological Research, Centre for Integrated Environmental Studies, Boeretang 200, B-2400 Mol, Belgium

r t i c l e i n f o

rticle history:
eceived 19 February 2009
eceived in revised form 9 November 2009
ccepted 28 January 2010
vailable online 19 February 2010

a b s t r a c t

The coherence between different aspects in the environmental system leads to a demand for comprehen-
sive models of this system to explore the effects of different management alternatives. Fuzzy logic has
been suggested as a means to extend the application domain of environmental modelling from physical
relations to expert knowledge. In such applications the expert describes the system in terms of fuzzy
variables and inference rules. The result of the fuzzy reasoning process is a numerical output value. In
eywords:
xpert knowledge
uzzy logic
ncertainty analysis

such a model, as in any other, the model context, structure, technical aspects, parameters and inputs may
contribute uncertainties to the model output. Analysis of these contributions in a simplified model for
agriculture suitability shows how important information about the accuracy of the expert knowledge in
relation to the other uncertainties can be provided. A method for the extensive assessment of uncertain-
ties in compositional fuzzy rule-based models is proposed, combining the evaluation of model structure,
input and parameter uncertainties. In an example model, each of these three appear to have the potential

ncer
to dominate aggregated u

. Introduction

In densely populated delta areas, water management requires
alancing of many different interests and user functions. Because of
he many different actors, and interaction with the physical envi-
onment, governed by many different physical processes, and the
eed for knowledge from many different areas, the decision mak-

ng process becomes very complex. To support the decision and
olicy making process, different tools are utilized. Among these are
oftware tools, where collected data and analytical models serve,
or instance, to explore different policy options, analyse real time
vents, or predict future states of the system configuration. The fact
hat not all desired information can be described in physical terms

ay restrict the application of such models. Sometimes experts
ay be able to provide valuable additional information. In such

ases the application of fuzzy rule-based models can be an option
Adriaenssens et al., 2004; Ascough et al., 2008). As in any other

nvironmental modelling approach, it is important to address the
ncertainty in the model’s output. This uncertainty assessment is
he result of the conceptualization of expert knowledge in a fuzzy
ule-based model. We develop a method to assess the different

∗ Corresponding author at: Waterschap Rijn en IJssel, Unit Water Policy, PO Box
48, 7000 AC Doetinchem, The Netherlands.

E-mail address: jaebjanssen@gmail.com (J.A.E.B. Janssen).
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tainty, supporting the relevance of an ample uncertainty approach.
© 2010 Elsevier B.V. All rights reserved.

uncertainties which may play a role in this knowledge concep-
tualization. A simple hypothetical model is used to illustrate the
method.

Uncertainty can be defined as ‘. . . any departure of the unachiev-
able ideal of complete determinism’ and perceived to be of either
an epistemic or a stochastic nature, i.e. either due to a lack of knowl-
edge or due to natural variability in the system (Walker et al., 2003).
Lately the notion of ambiguity as a third aspect of uncertainty arose
(Brugnach et al., 2007). Ambiguity can be defined as ‘. . .the simul-
taneous presence of multiple equally valid frames of knowledge’
(Dewulf et al., 2005). Uncertainty originating from any of these
three natures plays a role in river management. This implies an
important challenge for modelling for support of strategic river
management, namely to adequately address these uncertainties in
model outcomes (Clark, 2002; Jakeman and Letcher, 2003; Klauer
and Brown, 2004).

Much literature exists describing uncertainty analysis frame-
works (for an overview, see e.g. Refsgaard et al., 2007). In general,
it is acknowledged that models are simplifications of reality. The
process of abstraction of this reality into a software implementa-
tion means that elements from reality are omitted, or represented

by approximations (see Fig. 1 for a typical example of a rep-
resentation of the modelling cycle in literature). The process of
ongoing abstraction leads to uncertainties in models, additional
to those introduced through inputs and parameters. Walker et
al. (2003) provide a framework for the description of the uncer-

http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:jaebjanssen@gmail.com
dx.doi.org/10.1016/j.ecolmodel.2010.01.011
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Fig. 1. The modelling cycle for knowledge production and it’s steps: delineation of
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by the input on ‘wet days’, the first input variable. The two partial
output sets are aggregated using the OR operator, implying that
he part of the natural system to be studied, construction of a conceptual model,
lgorithmic (mathematical) implementation of the conceptual model, implementa-
ion of the algorithm in software, calibration of the model parameters, validation of
he model results (Kolkman et al., 2005), adapted from Dee (1995).

ainties in models, recognizing the steps of the modelling cycle in
ig. 1.

At the same time, the uncertainty issue has been addressed
y several authors from fuzzy set theoretic backgrounds (e.g. Klir
nd Yuan, 1995; Zimmermann, 2000; Zadeh, 2005). From this per-
pective, uncertainty is the result of some information deficiency.
nformation may be incomplete, imprecise, contradictory, not fully
eliable or vague (Klir and Yuan, 1995). Depending on the type of
ncertainty we deal with, different uncertainty theories can be
pplied and different techniques need to be used. Guyonnet et
l. (2003) for instance remark that representing imprecision or
ncompleteness by a probability distribution suggests that infor-

ation – about the distribution – is known, while this is often
ctually not the case. This may lead to non-conservative uncertainty
stimates.

Application of fuzzy set theory is a suitable approach in
hose cases in which uncertainty is due to incompleteness or
mprecision. Its application in environmental modelling became

idespread over the past decades, see e.g., Salski (1992), Dorsey
nd Coovert (2003), Adriaenssens et al. (2004), Prato (2005), Van
roekhoven et al. (2006), and Rocchini and Ricotta (2007). Also,
ncertainty in fuzzy models is addressed explicitly. Baudrit et
l. (2006), for instance, combine stochastic behavior (represented
y a probability distribution) and measurement error (without
nown uncertainty distribution, appropriately described as a fuzzy
et). Applications of combined fuzzy and probabilistic uncertainty
re found in a.o. Guyonnet et al. (2003), Hall et al. (2007), and
erraro (2009). Guyonnet et al. (2003) combine Monte Carlo anal-
sis with fuzzy interval analysis and label the result as ‘random
uzzy set’. These applications however focus on the propagation
r aggregation of uncertainty in individual fuzzy sets, rather than
n application to compositional fuzzy rule base models and the
ole of uncertainty and its propagation in the different model
omponents. Adriaenssens et al. (2004) touch upon the issue
f uncertainty in fuzzy rule-based models, but a comprehensive
nalysis complying with the perceptions of the environmental
odelling community so far fails to materialize. Ascough et al.

2008) specifically state the ample conveyance of uncertainties
nd its communication as major challenges to research on fuzzy

ets.

The objective of this paper is to show how the uncertainty
elated to using expert knowledge in compositional fuzzy rule-
ased models can be assessed. We propose and demonstrate a
elling 221 (2010) 1245–1251

method for the assessment of uncertainties in such models. The
outcomes of the uncertainty assessment give an indication of the
usefulness of model results, and of the distinctive power of the
knowledge in the model.

Linking the uncertainty to the modeler and the fuzzy perspec-
tive, we observe that the distinction between epistemic uncertainty
(which may include imprecision) and (natural) variability occurs in
both. According to Klir and Yuan (1995) fuzzy sets may express two
types of uncertainty, namely non-specificity (relating to the size of
different alternative sets, and fuzziness (or vagueness, relating to
the imprecise boundaries of the fuzzy sets). These interpretations
will prove helpful in a later stage of this paper.

2. Methods

For the analysis of uncertainties, the specific characteristic of
uncertainties that go along with representing knowledge in fuzzy
expert systems are used to interpret classify them using the frame-
work provided by Walker et al. (2003). We apply this to a simple
hypothetical model and illustrate the uncertainty propagation
through the model.

2.1. Fuzzy expert systems

The impact of different uncertainties on the outcome uncer-
tainty is demonstrated by means of a simple, hypothetical expert
system. It is composed of the minimally required components; a
knowledge base, an inference engine and a data base. The knowl-
edge base describes the inference rules, derived from experts. The
inference engine links these rules to the data from the data base
(storing data for each specific task of the expert system), thus result-
ing in an outcome value.

The rules in the fuzzy knowledge base are generally of the shape
‘IF x, THEN y’, with x and y fuzzy sets. Fuzzy sets are represented by
membership functions, describing on the variable domain what the
possibility (with values between 0 and 1) is that a variable X may
take a certain value x. The term possibility refers to the lack of sur-
prise (Shackle, 1961); the more possible a value, the less surprising
it is.

We here use trapezoid membership functions. Besides trape-
zoids, also triangles, Gaussian and other membership functions can
be used, depending on the data or problem at hand (Klir and Yuan,
1995). Input values will be partial member to one or more sets
defined on the interval. Depending on the set membership, differ-
ent rules will apply. Implication and aggregation operators and the
defuzzification method next determine the outcome value; see e.g.
Van Broekhoven and De Baets (2006).

In the current application we use the fuzzy AND (‘min’) operator
for implication, the fuzzy OR (‘max’) operator for aggregation, in the
Mamdani–Assilian inference (Mamdani and Assilian, 1975) with a
center of area (COA) defuzzification. An example of the construction
of a defuzzified output value for a hypothetical model employing
these operators and methods is depicted in Fig. 2. The example
shows how for a single combination of two inputs a compositional
fuzzy output surface emerges. The first input is partial member of
two sets, leading to the application of two rules. The AND operator
dictates truncation of the output set equal to the smallest (i.e. min-
imal) membership value of the two inputs. In this case this means
that membership to the output set is for both rules determined
the maximum set membership determines the local membership
value in the compositional output surface. By calculating the center
of area, the defuzzified value is calculated and a numerical output
value of the fuzzy reasoning process is obtained.
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Fig. 2. Illustration of the fuzzy inference process. The top line depicts the two inputs
and a single output; the second and third line show how two input values are partial
m
r
t
t

2

i
b
p
(

•

•

•

embers of two sets for ‘wet days’ and a single set for ‘dry days’. This leads two
ules to be fired. The implication operator determines the partial membership to
he output. These are aggregated into an output surface. The center of area is used
o determine the defuzzified output value.

.2. Uncertainty classification and analysis framework

The basis for the framework for uncertainty analysis is provided
n the paper by Walker et al. (2003). It is a very suitable framework
ecause it focuses on uncertainty in model-based decision sup-
ort. Three different dimensions of uncertainty are distinguished
Walker et al., 2003):

Nature: whether the uncertainty is due to imperfection of our
knowledge (epistemic), or due to the inherent variability of the
phenomena being described.
Level: where the uncertainty manifests itself along the (con-
tinuous) spectrum between deterministic knowledge and total
ignorance.
Location: where the uncertainty manifests itself in the compo-

nents of a model complex: in the context, in the model itself
(‘model technical’ or ‘model structure’ uncertainties), in the input,
in parameters or in the output.

Some remarks need to be made:

Fig. 3. Dimensions of uncertainty and markers for eac
elling 221 (2010) 1245–1251 1247

• With regard to the ‘nature’ of uncertainty, ambiguity should also
be acknowledged, in accordance with the definition given earlier.

• With regard to the ‘level’ of uncertainty, Walker et al. (2003) use
the markers ‘statistical’, ‘scenario’ and ‘recognized ignorance’. We
add to that the notion of a qualitative level of uncertainty. This
refers to uncertainties which cannot be quantified, but can be
described. It is placed between scenario and recognized igno-
rance.

• With regard to the ‘location’ of uncertainty, the marker ‘output’
denotes the consequence from propagation and aggregation of
uncertainties in other locations, rather than a conceptually spe-
cific location in itself. Output is therefore discussed as the result
of the propagation and aggregation of other uncertainties only.

The resulting analysis framework is depicted in Fig. 3. The loca-
tion of uncertainty is used as the starting point of the analysis.

2.3. Uncertainty analysis methods

In our analysis of uncertainties, we first describe the impact of
separate uncertainties on the model output, and then the aggre-
gated impacts of the combined uncertainties. In this way, the
analysis takes the form of a scenario analysis, organized after the
location of the uncertainty in the model. The classical approach of
sensitivity analysis of models relates to some one of the uncertain-
ties accounted for. The following methods apply to the different
uncertainties:

Context uncertainty: The uncertainty in the model context con-
cerns choices made in the step from natural system to conceptual
model. Answers to questions such as ‘where do we put the model
boundary’ and ‘which input and output variables do we choose’
can be uncertain if there are equally valid alternatives. The uncer-
tainty may be of an epistemic or ambiguous nature. Assumptions
or scenario’s are usually used to address these uncertainties.

Model structure uncertainty can be described as ‘. . . arising from
a lack of sufficient understanding of the system that is the sub-
ject of the policy analysis, including the behavior of the system and
the interrelationships among its elements’ (Walker et al., 2003).
It is one of the most difficult uncertainties to address in envi-
ronmental modelling (Van Asselt and Rotmans, 2002). We here
distinguish between two aspects of this uncertainty: the imprecise-
ness of knowledge related to the structure of the data on systems’
elements, and the uncertainty in the knowledge on interrelations
between elements of the system.

According to the non-specificity as defined by Klir and Yuan
(1995), the width of the membership function indicates a lack of
knowledge. This is here interpreted as the experts’ inability to con-
nect the different qualitative output states that are distinguished,
to precise output values. This interpretation relates to the character

of the present application, where fuzzy modelling is applied to rep-
resent a modest amount of qualitative information. Following this
interpretation, we argue that the size and shape of the output graph,
corresponding to a certain combination of input values, reflect an
uncertainty in the model structure. The level of this uncertainty is

h dimension, adapted from Walker et al. (2003).
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Table 2
Input combinations for the 10 cases in the execution of the uncertainty analysis.

Case # wet days # dry days

1 1 5
2 3 10
3 8 15
4 17 20
5 40 25
6 40 40
7 17 65

so certain about the parameterization of the sets, or if ambiguity
exists, a probability distribution of this uncertainty is unlikely to
be available. Both are, besides, very likely to occur (Adriaenssens et
al., 2004). We therefore assume this uncertainty to be of ‘ambigu-
ig. 4. Model structure uncertainty; defuzzified value and bandwidth based on COA
ight minus COA left.

qualitative’. We represent it by the difference ı between the cen-
ers of area (COA) of the subsets left and right of the original center
f area as shown in Fig. 4. This provides a measure of the uncer-
ainty reflected by the width and overlap of membership functions
MFs), following an interpretation that is consistent with using the
OA for defuzzification (Janssen et al., 2006). When combined with
ther uncertainties, the result is comparable to the random fuzzy
et (Guyonnet et al., 2003), with this difference that the uncertainty
s here directly measured in the fuzzy output graph.

Next, the choice of implication and aggregation operator is
onsidered to contribute to model structure uncertainty. The devi-
tion between outputs obtained with different operators is a
easure for this uncertainty, as long as the operators are consid-

red equally valid. The level of this model technical uncertainty
s ‘scenario’. For the inference procedure there is no equally valid
lternative, since Mamdani–Assilian is most suitable for rule-based
odels based on expert knowledge elicitation (Adriaenssens et al.,

004).
Model technical uncertainty concerns ‘. . . aspects related to the

omputer implementation of the model’ (Walker et al., 2003). The
odel technical uncertainty comprises both software and hard-

are problems or errors. Analysis of model technical uncertainty
ould require multiple simultaneous model implementations. This

oes beyond the scope of the current study.
Input uncertainty is both uncertainty about ‘. . . driving external

orces that produce changes within the system’ and uncertainty

able 1
arameterization of fuzzy sets for input and output variables. For each set, name,
uzzy set parameters and range of variation for sensitivity analysis are given. Param-
ter set [a b c d] denotes a trapezoidal fuzzy set with base [a d] and top [b c].

# of dry days # of wet days Agric. suitability

Low Very low Very bad
[−1 0 30 60] [−1 0 2 4] [−10 0 45 55]
±10 ±1 ±5

High Low Bad
[30 60 70 100] [2 4 6 10] [45 55 60 70]
±5 ±1 ±5

Very high High Average
[70 100 365 366] ± 10 [6 10 15 20] [60 70 75 85]

±2 ±5

Very high Good
[15 20 65 366] [75 85 90 100]
±2 ±5

Very good
[90 100 101 110]
±5
8 13 75
9 1 85

10 1 54

about ‘. . . the system data that ‘drive’ the model and typically quan-
tify relevant features of the reference system and its behavior’. This
uncertainty is considered to be of a stochastic nature, i.e. due to
variability in the system (with level marked as ‘statistical’ in the
framework), and was assessed using a Monte Carlo analysis. We run
a Monte Carlo analysis on the input, for which we assume a random
normal distribution with a standard deviation equaling 20% of the
reference value. As an effect size and shape of the output member-
ship functions will vary, and consequently a distribution of COA’s
left and right of the original will emerge (see also Janssen et al.,
2007).

Parameter uncertainty is uncertainty related to the a priori cho-
sen parameters, described by Walker et al. (2003) as ‘. . . parameters
that may be difficult to identify by calibration and are chosen to
be fixed at a certain value that is considered correct. The value of
such parameters is associated with uncertainty that must be esti-
mated on the basis of a priori experience’. Parameters determining
the shape and size of the membership functions correspond to this
location of uncertainty. We acknowledge that if the experts are not
Fig. 5. Fuzzy input combinations and resulting output (shaded). The marks indicate
the input combinations. They correspond to Table 2 in clockwise direction, starting
in the lower left corner.
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Fig. 6. (a–f) Outcomes of the uncertainty propagation. Boxes denote 25–75 percentile values with median inside, or COA left to COA right with COA inside; whiskers denote
complete ranges observed. (a) Model structure uncertainty from impreciseness as ı range for model output as fuzzy sets and complete range. (b) Model structure uncertainty
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10 different input combinations were analysed to illustrate differ-
ent possible cases (Table 2; Fig. 5). The combinations were chosen
to cover a wide range of locations in the different input sets and
their overlaps.

Table 3
Fuzzy rule base for the agricultural suitability of a location, depending on the local
number of wet and dry days.

# of wet days # of dry days
rom operator choice: defuzzified model output for 3 operator options. (c) Input u
d) Parameter uncertainty as 25–75 percentile boxes and outlier whiskers of defu
hiskers of the left and right COA of the Monte Carlo model output as fuzzy set. (
arlo defuzzified model output.

us’ nature and ‘scenario’ level, and we run a sensitivity analysis on
he parameters. The ranges for the parameters are given in Table 1;
n the analysis, resulting parameter combinations were constrained
o remain yielding valid membership functions.

Aggregated uncertainty results from all uncertainties above. We
ssessed it, based on a simultaneous variation of all randomly var-
ed values (parameters and inputs) in two ways. The resulting
ncertainty in the range ı was evaluated, and compared to the plain
odel structure uncertainty, next to the resulting uncertainty in

he defuzzified COA.
For individual as well as aggregated uncertainties, the above
nalysis methods yield a quantitative assessment of the conse-
uence for the outcome of the model. Together, it extends common
ncertainty analyses and sensitivity analyses, in that it not just

nvolves uncertainties due to uncertain model inputs and parame-
ers.
inty as 25–75 percentile boxes and outlier whiskers of defuzzified model output.
model output. (e) Aggregated uncertainty as 25–75 percentile boxes and outlier

regated uncertainty as 25–75 percentile boxes and outlier whiskers of the Monte

In the execution of the analysis, using the model in Section 2.3,
Low High Very high

Very low Very good Good Average
Low Good Average Bad
High Average Bad Very bad
Very high Bad Very bad Very bad
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.4. Model description

The conceptual model used in this paper model is essentially a
ypothetical simplification of the procedure to assess agriculture
uitability in river floodplains, as described by Klijn and De Vries
1997) based on the Dutch HELP procedure (Koerselman, 1987;

erkgroep Cultuurtechnisch Vademecum, 1988). The HELP pro-
edure links soil type and ground water levels to excess water or
ater shortage. The decrease in agriculture suitability due to both

s next expressed as a percentage of the theoretical maximum yield.
Klijn and De Vries (1997) apply this method specifically to flood-

lains. They assume:

1) a single soil type in the floodplains;
2) a lowland river;
3) a direct relation between river stage and ground water levels.

Based on these sources we assume that in simple form, the agri-
ulture suitability depends on the number of dry and the number
f wet days in this specific area during a long year average year.

When we assume that the rules and sets (Tables 1 and 3) are
ased on expert opinion, as is likely to be the case in such appli-
ations, there is no known distribution of uncertainty around the
arameters.

The inputs are supposed to be derived from measured data. The
ncertainty in the inputs can, due to the known data distributions,
e described in terms of probability distributions.

. Results

For all uncertainties analysed, the resulting uncertain outputs
or the 10 input combinations are depicted as box plots, showing
he median, the upper, and the lower quartile in the box. Whiskers
ndicate the extent of the entire output range.

Model structure uncertainty was assessed for two aspects. Model
tructure uncertainty from impreciseness of knowledge is depicted
s the range ı for the model output in Fig. 6a, showing a strong
ariation between cases. In particular cases 5 and 6 show large
ncertainty; this is mainly due to the large non-specificity of the

nput set ‘Very high’ for the number of wet days. For all cases, the
ange ı covers over 75% of the uncertainty range. Secondly, the
odel structure uncertainty from ambiguity in operators choice

s depicted in Fig. 6b. The scenario analysis with different opera-
ors shows that the uncertainty in the output is small compared
o the first model structure uncertainty, but with a similar case-
ependency, Again, cases 5 and 6 show the largest uncertainty,

nput uncertainty results depicted in Fig. 6c show, the stochasti-
ally determined 25–75 percentile boxes and complete ranges of
he model outcomes. In the first case random generated inputs

ay fall outside the variable’s fuzzy range, causing a large num-
er of samples to result in the same output value. Cases 2–6 show
significant uncertainty, of which the 25–75 percentile range cov-
rs only a modest share; moreover, the uncertainty range may be
symmetric. In cases 7–10 the outcomes show complete insensi-
ivity to uncertainty in input, indicating that regardless of small
ariations in the inputs, the values are still mapped to the same out-
ut surface, distant from where model output gradients are found.

n general, observed uncertainties are partly larger, partly smaller
han the model structure uncertainty.

Parameter uncertainty results are shown in Fig. 6d, depicting the

ensitivity to the variations in the model parameters. The uncer-
ainties are found to vary with a factor of about 2 between cases. The
5–75 percentile range covers a modest share of this uncertainty.
gain, uncertainties are smaller for cases located where model out-
ut gradients are low. The magnitudes of the total ranges of this
elling 221 (2010) 1245–1251

uncertainty per case are very similar to the (first aspect of) model
structure uncertainty.

Aggregated uncertainty is given in two ways. The whisker plots
for distribution of the upper and lower margins of the range ı
for the Monte Carlo simulations is shown in Fig. 6e, illustrating
that for some cases, the model structure uncertainty is sensitive
to input and parameters. This already could be expected from the
comparison of cases is Fig. 6a. The spread in defuzzified COAs in
Fig. 6f combines features of all of the earlier figures. The complete
uncertainty range for the COAs seem to follow the largest individ-
ual uncertainty of the first model structure uncertainty (cases 5
and 6), input uncertainty (case 2) or a combination of model struc-
ture, input and parameter uncertainty (cases 1, 3, 4, 7–10). The
25–75 percentile range for the COAs however does not cover the
range of uncertainty for cases with large model structure uncer-
tainty.

4. Conclusions and discussions

Description of the uncertainties in model outcomes is consid-
ered of paramount importance for the accurate interpretation of
these outcomes. This strongly applies to modelled expert knowl-
edge, since it is generally difficult to estimate the uncertainty
herein. The method provided in this paper extends the uncertainty
framework by Walker et al. (2003) in order to add information on
the value of expert knowledge in practical case studies.

Application of this uncertainty framework to a fuzzy rule-based
model shows how the uncertainties can be described, where in the
model they are located, which considerations to take into account
when performing quantitative uncertainty analysis, and how the
uncertainties interact with each other. Whereas others have shown
that the application of fuzzy sets allows incorporation of non-
probabilistic uncertainties, the current application shows how the
behavior of fuzzy rule-based models under different uncertainties
can be evaluated.

The method, using the ı range to represent the main extent of
the fuzzy output, is relatively insensitive to the type of membership
function. Also, in the relatively coarse model that was used in this
study, outcomes are not very sensitive to the application of different
operators. The differences in outcomes between the 10 cases eval-
uated are largely caused by differences in the non-specificity of the
input and output sets relevant to each case, and to the position of
the cases in relation to the fuzziness of sets. Non-specificity in par-
ticular is a strong factor in model structure uncertainty. Input and
parameter uncertainty depend strongly on the inputs for a partic-
ular location in relation to the parameters of the model, indicating
where large gradients in the output are found.

The findings presented here stress the relevance of an extensive
uncertainty analysis on fuzzy rule-based models in general, includ-
ing model structure uncertainty, and makes the challenges for fuzzy
set methodology in Ascough et al. (2008) more concrete. The chal-
lenge is of particular relevance because in this type of applications,
people may find it difficult to interpret a single defuzzified outcome
value in the light of the underlying sets and rule bases. Aspects of
the fuzzy characteristics of output like the ı range may be useful to
communicate a measure for the uncertainty covered in the fuzzy
output set, next to the degree of membership to the fuzzy output
set (Van Broekhoven et al., 2006).

In applications where fuzzy set modelling intends to (after
defuzzification) make a simplified representation of an extensive

knowledge base (for instance embedded in a model), parameters
may be chosen in the modelling process to try and minimize errors
in approximation of outputs and output gradients for relevant
inputs. In such applications, uncertainty would relate to the uncer-
tainties in the underlying model, combined with approximation
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rrors introduced by the defuzzified fuzzy model representation,
ather than by, e.g. the range ı for fuzzy output sets. In such appli-
ations, construction of the approximating fuzzy model involves,
.g. model structure elements and parameters to be jointly varied
o minimize approximation errors. In that way, uncertainty loca-
ions do become interdependent in ways that are not encountered
n the present case.

Challenges of fuzzy logic methods in such cases also include
uzzy technical aspects, where fast and accurate defuzzification
Van Broekhoven and De Baets, 2006) may support to make the
roposed extensive uncertainty assessment feasible in large fuzzy
odels.
Larger non-specificity and fuzziness in outcome sets represent

arger knowledge uncertainty. The relative contribution of different
ncertainties to the total outcome uncertainty may provide a useful

ead for uncertainty reduction.
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