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[1] This paper aims to investigate the effect of uncertainty originating from model inputs,
parameters and initial conditions on 10 day ensemble low flow forecasts. Two hydrological
models, GR4J and HBV, are applied to the Moselle River and performance in the
calibration, validation and forecast periods, and the effect of different uncertainty sources
on the quality of low flow forecasts are compared. The forecasts are generated by using
meteorological ensemble forecasts as input to GR4J and HBV. The ensembles provided the
uncertainty range for the model inputs. The Generalized Likelihood Uncertainty Estimation
(GLUE) approach is used to estimate parameter uncertainty. The quality of the probabilistic
low flow forecasts has been assessed by the relative confidence interval, reliability and hit/
false alarm rates. The daily observed low flows are mostly captured by the 90% confidence
interval for both models. However, GR4J usually overestimates low flows whereas HBV is
prone to underestimate them, particularly when the parameter uncertainty is included in the
forecasts. The total uncertainty in GR4J outputs is higher than in HBV. The forecasts issued
by HBV incorporating input uncertainty resulted in the most reliable forecast distribution.
The parameter uncertainty was the main reason reducing the number of hits. The number of
false alarms in GR4J is twice the number of false alarms in HBV when considering all
uncertainty sources. The results of this study showed that the parameter uncertainty has the
largest effect whereas the input uncertainty had the smallest effect on the medium range low
flow forecasts.
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1. Introduction

[2] Rain-fed rivers in Western and Central Europe have
a discharge regime with high flows in winter and low flows
in late summer due to the temperate climate. The rivers,
e.g., the River Rhine, are generally navigable throughout
the year, a situation which has contributed to the region’s
industrial and trade development. The rivers are used for
drinking water supply, irrigation, industrial use, power pro-
duction, and freight shipment and also fulfill ecological and
recreational functions [De Wit et al., 2007]. Floods and
low flows are seasonal phenomena that may cause several
problems to society. Since floods are eye-catching, quick,
and violent events risking human life, contingency plans
and water management bodies often focus on flood issues.
In contrast, low flows are slowly developing events affect-
ing a much larger area than floods. There is a growing con-

c-

ern that low flows will intensify due to climate change
[Arnell, 1999; Grabs et al., 1997; Hagemann et al., 2008;
Middelkoop et al., 2001]. Low flows in rivers may nega-
tively affect the above-mentioned river functions. Severe
problems, e.g., water scarcity for drinking water supply and
power production, hindrance to navigation and deteriora-
tion of water quality, have already been experienced during
low flow events in the River Rhine in the dry summers
such as in 1969, 1976, 1985, and 2003, indicating the im-
portance of considering these events in addition to flood
events.

[3] To anticipate possible low flow events it is crucial
that 10 day low flow forecasts become available in addition
to short-range (1–4 days) forecasts. The forecasted low
flow is commonly given as one value, even though it is an
uncertain value. There is an increasing interest to account
for uncertain information in decision support systems, e.g.,
how to operate river navigation and power plants during
low flow periods to maximize the gain. One challenge is to
develop systems that can use uncertain information [Enge-
land et al., 2010]. We are interested in forecasting low
flows with a lead time of 10 days, and in presenting corre-
sponding uncertainty to provide low flow information to
major river users. This study focuses on assessing the
uncertainty in ensemble 10 day low flow forecasts for two
conceptual hydrological models.
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[4] Carrying out a systematic uncertainty analysis in
hydrological modeling is an important field in hydrology,
according to the numerous recent contributions in well-
known journals [Cunha et al., 2012; Rossa et al., 2011;
Salamon and Feyen, 2009; Tolson and Shoemaker, 2008].
Uncertainty assessment has been one of the main goals of
the Prediction in Ungauged Basins initiative promoted by
the International Association of Hydrological Sciences
[Montanari, 2011]. Similarly, the Hydrological Ensemble
Prediction Experiment, another international initiative,
published a special issue on the results of the intercompari-
son experiment for postprocessing techniques for ensemble
forecasts [Van Andel et al., 2012]. Systematic uncertainty
analysis consists of several steps such as, classification, im-
portance assessment, quantification, uncertainty propaga-
tion through model, and finally, communication of the
uncertainty to the end users. After the identification of the
main sources of uncertainty [Ewen et al., 2006], these sour-
ces must be classified. There are many different
approaches for source classification. For instance,
Walker et al. (2003) classified uncertainty as originating
from model context, input, model structure, and param-
eters. Other studies distinguished the uncertainty in
observations, instruments, and the context of the prob-
lem, expert judgment, and indicators [Janssen et al.,
2005; Van der Sluijs et al., 2005; Warmink et al.,
2011]. It has been commonly accepted that model
inputs, parameters, initial conditions, and structure are
the major sources of uncertainty in conceptual hydro-
logical models [Refsgaard et al., 2006; Zappa et al.,
2011]. We focus on these sources for further analysis.
Quantification of the uncertainty sources is probably the
most difficult step of the uncertainty analysis.

[5] Uncertainty in forecasted input data, e.g., precipi-
tation and temperature, is mainly from the assumptions
and simplifications made when describing atmospheric
processes in weather forecast models. In particular,
future precipitation amounts are assumed to be very
uncertain [Cunha et al., 2012; Roulin, 2007]. To quantify
the uncertainty in weather forecasts, an ensemble of lower-
resolution forecasts (ENS) has been developed by the Euro-
pean Centre for Medium-Range Weather Forecasts
(ECMWF) and other national meteorological services [Euro-
pean Centre for Medium-Range Weather Forecasts, 2012].
The system is operational since 1992, and a number of modi-
fications have been implemented to its structure and grid re-
solution for improving the numerical weather predictions. In
this system, there are 50 different perturbed weather fore-
casts and an unperturbed control forecast. The 50 members,
comprising an ensemble, are computed for a lead time of 15
days using perturbed initial conditions and model physics
[Pappenberger et al., 2005; Roulin and Vannitsem, 2005].
Each member of an ensemble is assumed to be equally prob-
able and provide useful information to address the uncer-
tainty in future precipitation amounts [Roulin, 2007].
However, in the context of flow forecasting it is important to
assess the precipitation uncertainty in terms of the effect on
runoff rather than in terms of comparing forecasted precipi-
tation against observed precipitation [Arnaud et al., 2011;
Nester et al., 2012]. For example, Pappenberger et al.
[2005] and more recently Pappenberger et al. [2011] used
meteorological ensembles in hydrological models with dif-

ferent parameter settings to assess the uncertainty in flood
forecasts. Similarly, Randrianasolo et al. [2010] coupled
weather ensemble prediction system products from M�et�eo-
France with two hydrological models for forecasting dis-
charges of 211 catchments in France for a lead time of 2
days.

[6] Obviously, there are other sources of uncertainty in
low flow forecasts in addition to the model input [Mei�ner
et al., 2012; Zappa et al., 2011]. Hydrological models,
whether using observed [Cunha et al., 2012] or forecasted
[Nester et al., 2012] rainfall, are also limited by their
capacity to represent the dominant processes in the river
basin with appropriate spatial and temporal scales. Effec-
tive values of model parameters affected by local spatial
heterogeneities and nonstationarities provide usually loose
associations with dominant processes [Lawal et al., 1997;
Pappenberger et al., 2005; Stravs and Brilly, 2007].
Therefore, the uncertainty due to model parameters will
inevitably influence model outputs. There are a range of
methods of quantifying model parameter errors including
Monte Carlo simulations and analytical approaches [Mon-
tanari and Grossi, 2008]. Generalized likelihood uncer-
tainty estimation (GLUE) is a Monte Carlo based
technique developed for calibration and estimation of
uncertainty of predictive models using equifinality con-
cept [Beven and Freer, 2001; Stedinger et al., 2008;
Viola et al., 2009]. Concerning the choice of the likeli-
hood measure, Beven and Binley [1992] pointed out that
many likelihood measures in GLUE can be appropriate
for a given application. Jin et al. [2010] compared differ-
ent likelihood measures and the model uncertainty. They
found that a less strict likelihood function obviously leads
to a wider confidence interval of the output uncertainty.
Therefore, neither a too strict nor a too relaxed likelihood
is appropriate for the GLUE assessment. The GLUE
method has been widely used for flood forecasting [Pap-
penberger et al., 2004, 2005] and for simulation of both
high and low flows [Freer et al., 1996; Tolson and Shoe-
maker, 2008; V�azquez et al., 2009; Viola et al., 2009;
Tian et al., 2012]. In addition, the GLUE method is simple
and relatively easy to implement. Therefore, GLUE is
used in this study for model calibration and uncertainty
analysis.

[7] The drawbacks and advantages of the GLUE method
have been enormously discussed in the hydrology literature
[Beven and Young, 2003; Beven et al., 2007, 2008; Li
et al., 2010; Mantovan and Todini, 2006; Montanari,
2005; Stedinger et al., 2008].

[8] Beven et al. [2007] showed that if a correct formal
likelihood was used in the GLUE method, the results would
be identical with the formal Bayesian technique. Stedinger
et al. [2008] also showed that GLUE can produce meaning-
ful uncertainty and prediction intervals using a correct
likelihood function. Beven [2006] argues whether the
assumptions used in a formal Bayesian analysis are valid
for any nonsynthetic hydrologic system being modeled. In
our ensemble low flow forecasting case study, performing a
formal Bayesian method would require a very difficult pro-
cess of deriving a correct description of the residual errors
which are correlated in time and space. As a result, our
study utilizes an elaborated low flow likelihood function
within the GLUE method to assess parameter uncertainty.
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[9] Uncertainty in initial condition of state variables can
have a significant effect on low flow forecasts. The summer
forecasts, using a model initialized with an unsaturated soil
state and with a saturated soil, will be very different. Dur-
ing prolonged dry periods the discharge largely originates
from the release of groundwater storage [De Wit et al.,
2007; Tallaksen and Van Lanen, 2004]. Therefore, uncer-
tainty coming from the model initial conditions and
groundwater storage in particular should be treated sepa-
rately from the model parameter uncertainty, although
model parameters and states are part of the model structure
[Butts et al., 2004]. The uncertainties may be amplified
when cascaded through the hydrological model [Nester
et al., 2012]. Komma et al. [2007] showed that small errors
in rainfall may result in larger errors in model outputs.
They showed that an uncertainty range of 70% in the pre-
cipitation ensemble increased to an uncertainty range of
200% in forecasted runoff with a lead time of 48 h.
Although they related this to the nonlinearity of the catch-
ment response, this amplification could also be caused by
uncertainties from precipitation measurements and model
parameters [Nester et al., 2012]. Komma et al. [2007] also
showed that the assessment of precipitation uncertainty
should be in terms of the effect on model outputs (herein
forecasted low flows) instead of comparing only forecasted
precipitation and observed precipitation.

[10] Different methods, i.e., particle filter [DeChant
and Moradkhani, 2011] and ensemble Kalman filter
[Pasetto et al., 2012], have been applied to asses initial
condition uncertainty in the framework of ensemble
streamflow prediction. The resulting update is similar to
the static GLUE application [Pasetto et al., 2012]. These
filters are examples of data assimilation techniques that
are often used in short-term flood forecasts [Liu et al.,
2012; Moradkhani et al., 2012; Parrish et al., 2012].

[11] The aforementioned studies demonstrate the need
for a systematic uncertainty analysis framework that iso-
lates uncertainties due to various weather inputs, param-
eter estimation, and initial conditions. Understanding the
relative contributions of these sources to the total low
flow forecast uncertainty and to the quality of forecasts
can assist in the future development of ensemble fore-
casting systems. All studies mentioned constrain either
to only flood forecast models or to simulation models
used for low flows, but no similar application to low flow
forecasts is known to the authors which also uses a sound
model state updating procedure for assessing effect of
initial condition uncertainty. There have been studies
using ENS products for flood forecasting [Devineni
et al., 2008; Fundel and Zappa, 2011; Jaun and Ahrens,
2009; Muluye, 2011; Nester et al., 2012 ; Pagano et al.,
2012; Renner et al., 2009; Thirel et al., 2008, 2010] and
high-resolution precipitation ensemble forecast of a re-
gional climate model, i.e., Limited Area Ensemble Pre-
diction System developed within COSMO consortium
(COSMO-LEPS) [Addor et al., 2011; Zappa et al.,
2011], but no study is known to the authors which
focuses on 10 day low flow forecasts. Only short-range
low flow forecasts up to 4 days are issued by different
water authorities for the entire Rhine basin [De Bruijn
and Passchier, 2006]. There have been different cross-
border projects such as ‘‘Floods and low flow manage-

ment in the Moselle and Saar Basin (FLOW MS)’’ focus-
ing on climate impacts on low flows [Görgen et al.,
2010]. However, low flow forecasts followed by a sys-
tematic uncertainty analysis do not exist for the Rhine
basin and Moselle River, in particular, although there is
a high demand [Mei�ner et al., 2012 ; Rutten et al., 2008]
from different sectors (e.g., freight shipment, drinking
water supply, and energy production).

[12] The objectives of this study are to assess (1) the
uncertainty from ECMWF ensemble forecasted precipita-
tion and potential evapotranspiration; (2) the uncertainty
from the parameters of two hydrological models by
using the GLUE framework; (3) the uncertainty due to the
initial conditions; and (4) the effect of these uncertainties
on different low flow forecast quality and reliability
measures.

[13] Assessing the isolated three major sources of uncer-
tainty, i.e., model input, parameters, and initial conditions,
in ensemble low flow forecasts by applying all steps from
identification to communication of uncertainty, is an inno-
vative way to understand and explain the effects of differ-
ent uncertainties on the skill of low flow forecasts. In terms
of model storage update, i.e., estimation of the model states
at forecast issue day, a new method is proposed using
observed discharge. This is superior compared to using
only calibrated model run as there can be inevitable errors
between simulated and observed discharge affecting the
model initial condition. A further interesting aspect of this
study is the use of a new hybrid low flow likelihood func-
tion for GLUE, which allows evaluation of low flows. Low
flows in the Moselle River are investigated to allow the
navigation and energy sectors to timely prepare for low
flow conditions as they are the most important economic
river functions [Li et al., 2008; Rutten et al., 2008; Svens-
son and Prudhomme, 2005]. Since the River Rhine is a
large-scale river, the Moselle River is selected as a case
study. We use an exceedence probability of 75% (Q75) as a
threshold for the definition of low flows [Demirel et al.,
2012]. The number of days with low flows is sufficient to
calibrate a forecast model, and low flows at this threshold
are still affecting the important river functions. Several
types of ensemble weather forecast products from the ENS
data set are incorporated in this study to prepare model
inputs, i.e., daily precipitation (P) and potential evapotrans-
piration (PET) for a lead time of 10 days from the ENS
data set. We address the model structure uncertainty by
comparing two conceptual models with different complex-
ities: the GR4J conceptual model (G�enie Rural �a 4 para-
mètres Journalier) with four parameters [Perrin et al.,
2003] and the HBV conceptual model (Hydrologiska
Byråns Vattenbalansavdelning) with eight parameters
[Lindström et al., 1997]. These models are assumed to rep-
resent dominant low flow indicators (predictors) with their
appropriate temporal scales as identified by Demirel et al.
[2012]. The GR4J model is a French conceptual hydrologi-
cal model with a simple structure [Perrin et al., 2003].
With four parameters, it provides a minimum level of com-
plexity. The HBV model has been calibrated and operation-
ally used for the River Rhine [Renner et al., 2009].
Moreover, this model has been widely used in Rhine stud-
ies such as for real-time flow forecasts [Reggiani and
Weerts, 2008b], for climate impact assessment [Eberle,
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2005; Hurkmans et al., 2010; Te Linde et al., 2010, 2011],
and for assessing uncertainties in flood forecasts due to en-
semble weather forecasts by using a Bayesian postproces-
sor [Reggiani and Weerts, 2008a; Reggiani et al., 2009].

[14] This paper is organized as follows. In the next sec-
tion, the study area and data are presented. The model
structures and the uncertainty analysis method are
described in section 3. The results are presented in section
4, and the conclusions are drawn in section 5.

2. Study Area and Data

2.1. Study Area

[15] The Moselle River has a surface area of approxi-
mately 27,262 km2 and a length of 545 km. The source of
the river is in the forested slopes of the Vosges massif and
meanders before leaving France to form the border between
Germany and Luxembourg for a short distance. The river
enters Germany and flows past Trier to its confluence with
the Rhine at Koblenz. Two major tributaries, the Sauer and
Saar rivers, flow into the Moselle before the Trier dam.
There are other dams in the Moselle and Saar rivers,
whereas the Sauer river has a natural flow [Ackermann
et al., 2000; Belz et al., 1999]. Moreover, the river chan-
nels in the Moselle and Saar are mostly canalized for water
management purposes and available for river navigation,
while the Sauer is not navigable [Behrmann-Godel and
Eckmann, 2003]. Annual generated discharge in the
Moselle basin is about 410 mm (�130 m3s�1). The meas-
ured discharge at Cochem station fluctuates between 14
m3s�1 in dry summers and a maximum of 4000 m3s�1 dur-
ing winter floods. The altitude ranges from 59 to 1326 m
with a mean altitude of 340 m [Demirel et al., 2012].

2.2. Data

2.2.1. Observed Data
[16] Observed daily precipitation (P) and potential evapo-

transpiration (PET) estimated with the Penman-Wendling equa-
tion [Abwassertechnische Vereinigung - Deutscher Verband
f€ur Wasserwirtschaft und Kulturbau e. V. (ATV-DVWK), 2002]
were obtained from the German Federal Institute of Hydrology
(BfG) in Koblenz (Germany). Both variables are spatially aver-
aged, i.e., disaggregated over 26 Moselle subcatchments.

[17] The mean altitude of these subcatchments has been
also provided by BfG. The outlet discharge (Q) for the
Moselle (station 6336050 at Cochem) has been provided by
the Global Runoff Data Centre (GRDC), Koblenz (Germany).
The daily P, PET, and Q data series span from 1951 to 2006
(Table 1).
2.2.2. Meteorological Ensemble Forecast Data

[18] Both precipitation and other meteorological forecast
data used in this study are originated from the ECMWF-ENS

control and ensemble forecasts. These ensembles are com-
puted for a lead time of 1–10 days using perturbed initial
conditions and model physics (Table 2). A grid size of 0.25�

(�28 km) is chosen to retrieve weather forecast products
using the ECMWF Mars retrieval system. The PET forecasts
are determined by the Penman-Wendling equation requiring
only forecasted surface solar radiation and temperature at 2
m data [ATV-DVWK, 2002]. This is consistent with the
observed PET estimation carried out by the Federal Institute
of Hydrology in Koblenz, Germany. Both grid-based P and
PET ensemble forecast data are first interpolated over 26
Moselle subcatchments using areal weights. These subcatch-
ment averaged data are then aggregated to the Moselle basin
level.

3. Methodology

3.1. Overview of the Model Structures

[19] The two hydrological models (GR4J and HBV) are
briefly described later. Figure 1 shows the simplified model
structures.
3.1.1. GR4J

[20] The GR4J conceptual model has a parsimonious
structure with only four calibration parameters and has
been frequently used over hundreds of catchments world-
wide, with a broad range of climatic conditions from tropi-
cal to temperate and semiarid catchments [Perrin et al.,
2003]. The GR4J model requires only daily time series of
precipitation (P) and potential evapotranspiration (PET) as
inputs (Figure 1a). The four parameters in GR4J represent
the maximum capacity of the production store (X1), the
groundwater exchange coefficient (X2), the 1 day ahead
capacity of the routing store (X3), and the time base of the
unit hydrograph (X4). All four parameters are used to cali-
brate the model and estimate the parameter uncertainty (Ta-
ble 3) based on Tian et al. [2012] and Thyer et al. [2009].
The upper and lower limits are selected based on previous
works [Booij, 2005; Eberle, 2005; Perrin et al., 2003;
Pushpalatha et al., 2011; Tian et al., 2012].
3.1.2. HBV

[21] The HBV conceptual model was developed by the
Swedish Meteorological and Hydrological Institute in the
early 1970s [Lindström et al., 1997]. The HBV model con-
sists of four subroutines: a precipitation and snow accumu-
lation and melt routine, a soil moisture accounting routine,
and two runoff generation routines. The input data are daily
P and PET. Since the Moselle basin is a rain-fed basin, the
snow routine and daily temperature data are not used in this
study (Figure 1b). The eight most important parameters in
the HBV model (Table 3) are used to estimate the

Table 1. Observed Data

Data Index Spatial Resolution
Number of

Stations/Subbasins Period Time Step Source

Discharge at Cochem station Q Point 1 1951–2006 24 h GRDC-Koblenz
Precipitation P Subcatchments 26 1951–2006 24 h BfG-Koblenz
Evapotranspiration PET Subcatchments 26 1951–2006 24 h BfG-Koblenz
Mean altitude h Subcatchments 26 BfG-Koblenz
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parameter uncertainty [Engeland et al., 2010; Tian et al.,
2012; Van den Tillaart et al., 2012].

3.2. Calibration and Validation

[22] The GR4J and HBV models are calibrated using the
GLUE method and historical Moselle low flows for the pe-
riod from 1 January 1971 to 31 December 2001. The cali-
bration period is rigorously selected as the first forecast
issue date is 1 January 2002 and the number of low flow
events (i.e., 567 days with low flows) in the calibration pe-
riod is reasonably long for hydrological models [Perrin
et al., 2007]. The validation period spans from 1 January
1951 to 31 December 1970. The definition of low flows,
i.e., discharges below the Q75 threshold of �113 m3s�1, is
based on previous work by Demirel et al. [2012].

[23] The GLUE method [Beven and Binley, 1992] uses
the ‘‘equifinality’’ concept rejecting only one optimal pa-
rameter set, instead, it uses many parameters sets that pro-
vide relatively equal performance [Beven and Freer, 2001].
This method is developed as an extension of the general-
ized sensitivity analysis (GSA) of Spear and Hornberger
[1980] based on Bayesian Monte Carlo simulations. GLUE
has been widely used for calibration of hydrological mod-
els since it is easy to implement and allows flexible defini-
tion of a likelihood function to evaluate the model outputs
and to distinguish between behavioral (accepted) and non-
behavioral (rejected) parameter sets [Freer et al., 1996;
Ratto et al., 2007; Renard et al., 2010; Shen et al., 2012].
Behavioral parameter sets are then those that provide

predicted low flows that fall within the limits of acceptabil-
ity with regard to a given likelihood measure [Zheng and
Keller, 2007]. It should be noted that the selection of the
behavioral parameter sets is based on only the calibration
period runs. In this study, the GLUE method, consisting of
the three steps later, is applied for the selection of behav-
ioral parameter sets. It is assumed that these parameter sets
represent the uncertainty in model parameters.

3.2.1. Step 1: Definition of a Hybrid Likelihood
Function for Low Flows

[24] The most commonly used likelihood function in
GLUE literature is the Nash-Sutcliffe (NS) coefficient
[Beven and Freer, 2001; Nash and Sutcliffe, 1970; Shen
et al., 2012]. However, other likelihood functions have
been used for low flows [Pushpalatha et al., 2012]. In our
study, we combined two low flow likelihood functions
using subjectively selected weights. The new hybrid likeli-
hood function (NShybrid) substantially improves the low
flow forecasts as it combines NS based on only low flows
(NSa) and NS based on inverse discharge values (NSb) (see
equations (1)–(3)).

NSa ¼ 1�

Xm

j¼1
Qsim jð Þ � Qobs jð Þð Þ2Xm

j¼1
Qobs jð Þ � Qobs

� �2
; ð1Þ

where Qobs and Qsim are the observed and simulated values

Figure 1. Schematic of (a) GR4J model and (b) HBV model.

Table 2. Overview of the Ensemble Forecast Data

Data Index Spatial Resolution Ensemble Size Period Time Step Lead Time R2 (240 h) MAE (240 h)

Forecasted P Pforecast 28 km 50þ 1 control 2002–2005 24 h 240 h 0.07 3.16 mm
Forecasted PET PETforecast 28 km 50þ 1 control 2002–2005 24 h 240 h 0.77 0.59 mm

DEMIREL ET AL.: EFFECT OF THREE UNCERTAINTY SOURCES ON LOW FLOW FORECASTS

4039



for the jth observed low flow day (i.e., Qobs<Q75), and m
is the total number of low flow days.

NSb ¼ 1�

Xn

i¼1
1=ðQsim ið Þ þ EÞ � 1=ðQobs ið Þ þ EÞð Þ2Xn

i¼1
1=ðQobs ið Þ þ EÞ � 1=ðQobs þ EÞ
� �2

; ð2Þ

[25] where n is the total number of days (i.e., m< n), and
E is 1% of the mean observed discharge to avoid infinity
during zero discharge days.

NShybrid ¼ �
NSa

2� NSa

� �
þ � NSb

2� NSb

� �
; ð3Þ

where both NSa and NSb values range from �1 to 1, with
1 indicating a perfect fit [Pushpalatha et al., 2012]. The
weights � and � are selected as 0.3 and 0.7, respectively.
These weights have been determined during calibration pe-
riod. First component of our hybrid likelihood function is
strictly developed for the low flows. Therefore, the result-
ant scores for this component can often be negative. Second
component considers the inverse of all discharge values.
The weights are determined for making the outcome values
of our hybrid likelihood function positive for the calibra-
tion runs. In other words, the weights keep the balance
between very strict and less strict likelihood functions since
in cases with very strict low flow calibration, i.e., high �
values, both the GR4J and HBV models show results with
very low likelihood values since the NSa values are nega-
tive for both models.

3.2.2. Step 2: Sampling Parameter Sets for Two
Conceptual Models

[26] Previous model calibration and sensitivity analysis of
the GR4J [Perrin et al., 2003; Pushpalatha et al., 2011] and
HBV [Booij, 2005; Eberle, 2005; Tian et al., 2012] in other
rain-fed basins have allowed the prior uncertainty ranges of
sensitive parameters to be assessed. These studies also indi-
cated significant uncertainties for the sensitive parameters
and emphasized the importance of inspecting the upper and
lower parameter limits more in detail. Therefore, a sensitivity
analysis is pursued using a large parameter space to select the

most important parameters and their appropriate upper and
lower limit values.

[27] Independent uniform distributions for each effective
parameter are chosen due to the lack of prior knowledge
about the true distributions. The typical drawback of the
GLUE method is the computational time caused by its ran-
dom sampling strategy. Therefore, an improved sampling
technique, i.e., Latin hypercube sampling (LHS), was used
with the GLUE method [McKay et al., 1979]. Compared to
a standard GLUE random sampling, LHS substantially
reduces the computational burden for sampling and provide
a tenfold greater efficiency in parameter space coverage
[Shen et al., 2012]. The sampling size should be large
enough to ensure a sufficient calibration of the model. In
this study, we generated 120,000 parameter sets for each
conceptual model using LHS in the range of lower and
upper limits given in Table 3. To our knowledge, this is the
largest LHS sample size tested in low flow hydrology.

3.2.3. Step 3: Threshold Definition for Behavioral
Model Selection

[28] The GR4J and HBV models are run for each of the
120,000 sets in the calibration. The output is evaluated
against the observed daily discharge at Cochem station
located at the outlet of the Moselle subbasin using the NShy-

brid likelihood function to distinguish between behavioral pa-
rameter sets (accepted) and nonbehavioral parameter sets
(rejected). The parameter sets meeting the predefined thresh-
old criterion (NShybrid> 0.40) are accepted. Although the
threshold value is a subjective decision [Jin et al., 2010], we
rigorously tested several thresholds based on low flow simu-
lations and the size of the behavioral parameter sets for each
model. The selected threshold resulted in two large behav-
ioral parameter sets for parameter uncertainty analysis, i.e.,
9770 � 4 (GR4J) corresponding to �8% of the sample pa-
rameter set and 10,909 � 8 (HBV) corresponding to �9% of
the sample parameter set.

3.3. Model Storage Update Procedure

[29] Model storage updating is based on the observed
discharge on the forecast issue day (Qobs). This is a crucial
step for medium-range and seasonal low flow forecasts

Table 3. Parameters of the Models Used and Their Prior Uncertainty Ranges

Parameter Unit Range Description

GR4J Model
X1 mm 10–2000 Capacity of the production store
X2 mm �8 to þ6 Groundwater exchange coefficient
X3 mm 10–500 One day ahead capacity of the routing store
X4 days 0–4 Time base of the unit hydrograph

HBV Model
FC mm 100–800 Maximum soil moisture capacity
LP 0.1–1 Soil moisture threshold for reduction of evapotranspiration
BETA 1–6 Shape coefficient
CFLUX mm/d 0.1–1 Maximum capillary flow from upper response box to soil moisture zone
ALFA 0.1–2 Measure for nonlinearity of low flow in quick runoff reservoir
KF d�1 0.005–0.5 Recession coefficient for quick flow reservoir
KS d�1 0.0005–0.2 Recession coefficient for base flow reservoir
PERC mm/d 0.01–6 Maximum flow from upper to lower response box
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since the model initial state determines the model outputs
[Wöhling et al., 2006].

[30] There are two storages in the GR4J model and three
storages in the HBV model which are updated during low
flow forecasts. The reader is referred to Perrin et al. [2003]
and Lindström et al. [1997] for details of the process for-
mulations in these models. A practical approach is used for
both models. First, the two calibrated models are run with
their best performing parameter sets, and model states are
analyzed. This run is called the ‘‘reference run’’ in other
recent works [Fundel and Zappa, 2011; Roulin, 2007;
Roulin and Vannitsem, 2005]. The empirical relations
between the simulated discharge and the fast runoff for
each model are used to divide the observed discharge
between the fast and slow runoff components (equations
(4) and (5)).

k GR4J ¼ Qd

Qr þ Qd
ð4Þ

k HBV ¼ Qf

QfþQs
: ð5Þ

[31] The Qr and Qd in the GR4J model, and Qf and Qs
in the HBV model are estimated using these fractions to-
gether with the observed discharge value at the forecast
issue day. Subsequently, the routing storage (R) in the
GR4J model is updated for a given value of the X3 parame-
ter using equation (6). Further, the surface water (SW) and
groundwater (GW) storages in the HBV model can be
updated for a given value of KF, ALFA, and KS parameters
using equations (7) and (8).

Qr ¼ R 1� 1þ R

X 3

� �4
" #�1=4

8<
:

9=
; ð6Þ

SW ¼ Qf

KF

� � 1= 1þALFAð Þð Þ
ð7Þ

GW ¼ Qs

KS
ð8Þ

[32] The other two storages S (in GR4J) and SM (in
HBV) are difficult to update using an empirical bottom-up
approach. Instead, these two storages are updated using the
calibrated model run until the forecast issue day (i.e., top-
down approach). It is assumed that the two updated sto-
rages (S and SM) represent the reality due to the calibrated
model run. However, we are aware that there are inevitable
uncertainties associated with this rough estimation of the
initial conditions based on observed discharges and cali-
brated models’ simulations.

3.4. Uncertainty Sources and Quantification

[33] A robust assessment of uncertainties begins with
identification of all sources [Refsgaard et al., 2007]. Obvi-
ously, not all sources can be quantified. We used available
classification schemes to identify and select the most im-
portant uncertainty sources in the two conceptual models
and for low flow forecasting [Walker et al., 2003; War-

mink et al., 2010]. Three uncertainty sources and their
quantification are described in the following sections. It
should be noted that errors in model structure are also im-
portant for hydrological models [Götzinger and B�ardossy,
2008; Gupta et al., 2012; Renard et al., 2010; Tian et al.,
2012]. In this study, the model structure uncertainty is
addressed partly by comparing two different model
structures.

3.4.1. Input Uncertainty
[34] A rainfall event after the forecast issue day can eas-

ily increase flows above low flow threshold in the Moselle
River. Therefore, low flow forecasts are highly dependent
on the quality of ENS weather forecasts. These forecasts
are available at a spatial resolution of approximately 28 km
� 28 km for daily time steps. It has been reported that after
several days these forecasts are highly uncertain due to the
modeling limitations and complexity of the physical proc-
esses involved in the atmosphere [Fundel and Zappa,
2011; Reggiani et al., 2009]. In this study, the 51 ensemble
members are used to quantify the uncertainty of future pre-
cipitation and potential evapotranspiration amounts. Obvi-
ously, new uncertainties are introduced using the empirical
PET formula [ATV-DVWK, 2002] and grid data interpola-
tion over 26 Moselle subcatchments.

3.4.2. Parameter Uncertainty
[35] The GLUE method is used for quantification of pa-

rameter uncertainties. This method rejects the idea of an
optimal system representation and applies the equifinality
concept accepting all forecasts using the behavioral param-
eter sets. This parameter ensemble then allows assessment
of the output uncertainty arising from model parameters
and partly from model structure [Pappenberger et al.,
2005]. All four parameters of GR4J and eight parameters
of the HBV are selected to estimate the parameter
uncertainty.

3.4.3. Initial Condition Uncertainty
[36] The importance of initial conditions for hydrologic

forecasting is well established [Shukla and Lettenmaier,
2011; Wood and Lettenmaier, 2008]. In most of the hydro-
logic modeling studies, initial conditions refer only to land
surface states including soil moisture and snow cover [Li
et al., 2009]. In this study, however, all model states, present
in the conceptual models used, are included in the uncertainty
analysis. This is from the fact that errors in estimated initial
slow and fast runoff storages directly affect the low flow
forecasts. We demonstrate a dynamic inverse-modeling
approach based on observed discharge and uniformly distrib-
uted behavioral parameter sets on the forecast issue day for
exploring the initial condition uncertainties and characteriz-
ing the relative importance of this uncertainty source for low
flow forecasts. The X3 parameter of GR4J and KF, ALFA,
and KS parameters of HBV are uncertain parameters that are
directly linked to the model states (i.e., initial conditions).
Other parameters are only assumed uncertain in the parame-
ter uncertainty assessment.

3.5. Uncertainty Propagation

[37] The three sources of uncertainty described earlier
are propagated through the GR4J and HBV models both
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separately and together. The latter case is executed to en-
capsulate the total uncertainty arising from all three sources
together. In other words, this study employs the GLUE, an
extended GSA method [Freer et al., 1996; Ratto et al.,
2007], to apportion the output uncertainty of a model to dif-
ferent sources of uncertainty.

[38] The 10 day low flow forecasts are issued every day
for the test period from 1 January 2002 until 31 December
2005. The posterior distribution of the model outputs (e.g.,
confidence interval) is based on 10,000 Monte Carlo runs
for each day (a total of 1461 days). The size of the Monte
Carlo sample is assumed to be reasonable based on the
number of behavioral parameter sets and on the relevant lit-
erature [Blasone et al., 2008; Franz and Hogue, 2011;
Rossa et al., 2011; Shen et al., 2012].

[39] For assessing the effect of the uncertainty in the
forecasted input data, we run the models using randomly
selected P and PET values from 51 members, while the
model parameters and model states are fixed according
to the best performing calibrated parameter values (Ta-
ble 4).

[40] For assessing uncertainty in model parameters, we
run the models using randomly selected behavioral parame-
ter sets, while the model inputs are fixed to ECMWF-ENS
control forecast P and PET, and the model states are
updated using the best performing calibrated parameter
values.

[41] For assessing the uncertainty in model states at fore-
cast issue day, the routing storage (R) in the GR4J model is
updated using randomly selected behavioral X3 parameter
values, and the surface water (SW) and groundwater (GW)
storages in the HBV model are updated using randomly
selected values of KF, ALFA, and KS parameters from be-
havioral parameter sets for each of the 10,000 Monte Carlo
runs for each day. The remaining model parameters are
fixed to the best performing calibrated parameter values,
and the model inputs are fixed to ECMWF-ENS control
forecast P and PET to evaluate the initial condition uncer-
tainty (Table 4).

[42] It should be noted that spatial and temporal consis-
tency of the inputs are preserved to avoid nonphysical out-
comes. For assessing the total uncertainty, we run the
models using randomly selected model inputs, behavioral
parameter sets, and corresponding model states. For exam-
ple, the storage S can never exceed the X1 parameter value
in the GR4J model [Perrin et al., 2003]. Similarly, we
defined a ‘‘saturation rate’’ as the fraction of SM storage to
the calibrated FC parameter.

SM k; tð Þ ¼ FC kð Þ � SMopt tð Þ
FCopt

: ð9Þ

[43] For each kth Monte Carlo run at each tth forecast
issue day, a new parameter set is randomly selected from
the behavioral set, and SM is calculated using equation (9).
Therefore, the saturation rate is kept constant for a particu-
lar day throughout the entire uncertainty propagation
framework.

3.6. Uncertainty Presentation

[44] Uncertainty presentation allows the low flow fore-
casts to be monitored, thus helping to improve forecast
quality by analyzing uncertainties in the model outputs and
allowing comparison of different models. Obviously, the
added value of a low flow forecasts for decision makers
depends on its uncertainty characteristics. We employed
three forecast quality measures to analyze the results of the
uncertainty quantification in 10 day low flow forecasts.
These measures have been often used in meteorology
[WMO, 2012] and flood hydrology [Renner et al., 2009;
Thirel et al., 2008; Vel�azquez et al., 2010]. In World Mete-
orological Organization [2012], three properties of an
accurate probabilistic forecast are defined as reliability,
sharpness, and resolution. In this study, three forecast qual-
ity measures have been rigorously selected to evaluate
these three properties of the forecasts, i.e., reliability dia-
gram—reliability, RCI—sharpness, and contingency ta-
ble—resolution.

3.6.1. Relative Confidence Interval
[45] The standard 90% confidence interval (90CI) was

derived by ordering the 10,000 outputs on every day in the
test period and then identifying the 5% and 95% percentiles
(i.e., Q5 and Q95). The 90CI, observed discharge, and 50%
percentile (i.e., Q50 forecast median) are presented to-
gether. The relative confidence interval (RCI) is then calcu-
lated for only low flow days j using equation (10) to
monitor the evolution of uncertainties with increasing lead
time and to compare the effect of different uncertainty
sources on the relative confidence interval.

RCI ¼ 1

m
�
Xm

j¼1

Q95 jð Þ � Q5 jð Þ
Q50 jð Þ ; ð10Þ

where m is the total number of low flow days.

Table 4. Overview of the Uncertainty Propagation Test Scheme

Assessed Uncertainty

Forecasted P and PET Parameters Initial Conditions

1 Control 51 Ensemble Calibrated Set GLUE Set Calibrated Run GLUE set (X3, KF, ALFA, and KS)

Deterministic � � �
Input � � �
Parameter � � �
Initial Condition � � �
Total � � �
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3.6.2. Reliability Diagram
[46] The reliability diagram is an approach used to repre-

sent the performance of probabilistic forecasts of selected
events, i.e., low flows [Bröcker and Smith, 2007]. A reliabil-
ity diagram shows the observed relative frequency as a func-
tion of forecast probability, and the 1:1 diagonal represents
the perfect reliability line [Olsson and Lindström, 2008;
Vel�azquez et al., 2010]. In the present study, nonexceedence
probabilities of 50%, 75%, 85%, 95%, and 99% are chosen
as thresholds to categorize the discharges from mean flows to
extreme low flows. The forecast probability for each forecast
day is estimated as the number of ensemble forecasts exceed-
ing these thresholds divided by the total number of ensemble
forecasts (i.e., 10,000 ensembles) in that forecast day. The
forecasts are then divided into bins of probability categories;
here, five bins (categories) are chosen 0%–20%, 20%–40%,
40%–60%, 60%–80%, and 80%–100%. The observed fre-
quency for each day is estimated as one if the observed dis-
charge exceeds the threshold, or zero, if not. The forecast
probability and observed frequency can then be drawn.
3.6.3. Contingency Table

[47] We used contingency tables to assess the effect of
uncertainty on the performance of low flow forecasts. Con-
tingency tables, particularly used in flood warnings [Mar-
tina et al., 2005], can be used to estimate the utility of
hydrological forecasts and in their simplest form, indicate
the forecast models ability to correctly anticipate the occur-
rence or nonoccurrence of preselected events (i.e., Q75 low
flows). The definitions of four cases are given in a two-by-
two contingency table (Table 5).

[48] The skill of a forecasting model can be represented
on the basis of the hit rate and the false-alarm rate [Cloke
and Pappenberger, 2009; Martina et al., 2005]. Both ratios
can be easily calculated from the contingency table using
equations (11) and (12).

hit rate ¼ hits

hits þmissesð Þ ; ð11Þ

false alarm rate ¼ false alarms

correct negativesþ false alarmsð Þ : ð12Þ

[49] It should be noted that these ratios are also known
as the probability of detection and the probability of false
detection in other hydrological studies [Vel�azquez et al.,
2010]. The hit and false-alarm rates indicate, respectively,
the proportion of events for which a correct warning was
issued and the proportion of nonevents for which a false
warning was issued by the forecast model.

4. Results and Discussion

4.1. Calibration and Validation

[50] The best performing parameter sets of the two mod-
els are shown in Table 6. The corresponding highest NShy-

brid values are 0.62 for the GR4J model and 0.56 for the
HBV model. The GR4J model performs better than the
HBV model on low flows based on only the best perform-
ing simulation in the calibration period. However, the HBV
model performed better in the validation period. The high-
est NShybrid values did not change using another global
optimization technique, i.e., a genetic algorithm [Vel�azquez
et al., 2010], showing that 120,000 parameter sets for each
model are enough for calibrating the models. Considering
the performance only in the low flow period (i.e., NSa), the
performance of the HBV model is better than the GR4J
model in the calibration period. However, the drop in per-
formance of the HBV model in the validation and the fore-
cast periods is much larger than for the GR4J model. Such
a drastic drop outside the calibration period is expected
from a relatively complex model like HBV with eight
parameters since it has more degrees of freedom to adjust
to the basin behavior during the calibration period. This
characteristic is somewhat concealed by the NShybrid results
due to the subjective weights and due to the insensitive
inverse performance index (i.e., NSb). That is why all three
performance indices have been presented in Table 6. The
models are calibrated for a relatively wetter climate with
�910 mm mean annual precipitation than for the validation
period (�890 mm) and forecast period (�830 mm).

[51] The calibrated models are run for the test period
(i.e., 2002–2005) to estimate the fraction of fast runoff to
total runoff in the two models (Figure 2) and to update sto-
rages S and SM (i.e., top-down approach). The exponential
relation between the fraction values and the simulated

Table 5. Contingency Table for the Assessment of Threshold-Based Forecasts

Low Flow Event (Q75) Observed Not Observed

Forecasted Hit : the event forecast to occur and did occur False alarm : event forecast to occur but did not occur
Not forecasted Miss : the event forecast not to occur but did occur Correct negative: event forecast not to occur and did not occur

Table 6. Calibration, Validation, and Forecast Results

Parameter
and Likelihood

1971–2001
Calibration

1951–1970
Validation

2002–2005
Forecast

GR4J Model
X1 (mm) 649.2
X2 (mm) �1.3
X3 (mm) 47.2
X4 (days) 2.9

NSa �0.68 �1.39 9.29
NSb 0.99 0.76 0.99
NShybrid 0.62 0.31 0.45

HBV Model
FC (mm) 239.6
LP 0.48
BETA 2.13
CFLUX (mm/d) 0.13
ALFA 1.77
KF (d�1) 0.01
KS (d�1) 0.01
PERC (mm/d) 0.76

NSa �0.23 �1.13 �70.16
NSb 0.92 0.90 0.99
NShybrid 0.56 0.47 0.41
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discharge shows that the total discharge is dominated by
flows from the fast runoff storage during high flows. These
categorized values have been used to estimate fast and
slow runoff storages in the GR4J and HBV models. The
k_GR4J fraction is zero for low flows and 0.04 for high
flows above 6 mm, whereas the k_HBV fraction is about
zero for low flows and one for high flows above 6 mm. Ta-
ble 7 shows the empirical equations fitted to the simulation
data presented in Figure 2.

4.2. Effect of Uncertainty on Confidence Intervals of
Low Flow Forecasts

[52] For the purpose of determining the extent to which
different sources of uncertainty affect low flow forecasts
for a lead time of 10 days, the degree of uncertainty in
model outputs is expressed by a 90% confidence interval
(90CI). The 90CI, the forecast median, and the observed
low flows for both models are shown in Figure 3. Daily

Figure 2. Fraction of fast runoff Qf or Qd to total runoff Qsim as a function of simulated discharge, i.e.,
above and below Q75 for the (a) GR4J and (b) HBV models.

Table 7. Empirical Equations to Divide Observed Discharge (Qobs) Into Fast and Slow Runoff

Qobs Category (mm)

�Q75 >Q75 and �6 >6

k_GR4J 0 �0:00007� Qobs
3 þ 0:001� Qobs

2 þ 0:0003� Qobs þ 0:004 0.04

k_HBV 4:9� Qobs
3:7 þ 0:002 0:81� e0:02�Qobs � 1:4� e�1:9�Qobs 1

DEMIREL ET AL.: EFFECT OF THREE UNCERTAINTY SOURCES ON LOW FLOW FORECASTS

4044



Figure 3. Different uncertainty sources and confidence intervals of low flow forecasts for a lead time
of 10 days using the (a) GR4J and (b) HBV models.
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discharge values (m3 s�1) have been presented on a loga-
rithmic y axis.

[53] There are significant differences between the two
model results as 10 day ahead low flows are mostly overes-
timated by the GR4J model under uncertain conditions. As
can be seen from Figure 3 the overestimation is more pro-
nounced for the parameter uncertainty case than for other
cases. First thing to be considered are the dependencies and
interactions between groundwater storages and model pa-
rameters since the fraction of fast runoff to total runoff is
about zero showing that the discharge, during low flows, is
mainly produced in the groundwater storage (Figure 2).
The more pronounced overestimation of GR4J compared
for the underestimation of HBV may indicate that the slow
responding groundwater storage of the HBV is less sensi-

tive to different behavioral parameter sets. The more com-
plex soil moisture and percolation components of the HBV
model can also be a reason for the successful low flow fore-
casts of the HBV model under uncertain conditions. The
systematic overestimation of forecasted precipitation is,
therefore, well handled by the HBV model. However, it
should be noted that the GR4J model is slightly better than
HBV in deterministic 10 day forecasts (Table 6). Further,
the low flows are usually underestimated by the HBV
model, as shown in the last plot in Figure 3b.

[54] Surprisingly, there have been excessive rainfall
forecasts for several days in summer months (e.g., in Au-
gust 2005) causing high forecasted discharges (Figure 3).
These days were carefully examined to determine if they
significantly change the overall RCI results. However, they

Figure 4. Effect of different uncertainty sources on relative confidence intervals of low flow forecasts
with the (a) GR4J and (b) HBV, as a function of lead time.
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caused very minor effects on the RCI results that are based
on the mean of the confidence interval statistics from 567
low flow days. Thus, the uncertainty in 10 day low flow
forecasts is larger in the GR4J model compared to the HBV
model. The GR4J model overestimates low flows for all
sources of uncertainty and for parameter uncertainty, in
particular, whereas the HBV model tends to underestimate
low flows.

[55] Figure 4 compares two models and the effect of dif-
ferent uncertainty sources on the RCI of low flow forecasts
with increasing lead time. From Figure 4, we can clearly
see that the total uncertainty in the GR4J outputs is much
higher than in the HBV outputs. This is similar to the
results that we have seen in Figure 3. Comparing only
10 day forecasts issued by the two models, the RCI is
�110% for the HBV model and �300% for the GR4J
model (i.e., nearly tripled). One anticipated finding is that
the RCI tends to increase with increasing lead time for both
models and for all evaluated uncertainty cases. The
increase of RCI for the initial condition uncertainty is
slowest, showing that the initial condition uncertainty is
less sensitive to increasing lead time. This is expected
since our storage update procedure only depends on
observed discharge and some of the model parameters.
However, the uncertainty due to the model inputs (fore-
cast P and PET) increases considerably with increasing
lead time. This is from the fact that the error in the en-

semble meteorological forecasts increases for longer lead
times due to the atmospheric model limitations. It is
interesting to note that the 10 day forecasts are even
better using zero precipitation as model input, i.e., NShy-

brid for the GR4J results is increased from 0.45 to 0.54
in the test period from 2002 to 2005.

[56] The total uncertainty for the GR4J model is sum of
the three sources of uncertainty assessed in this study.
Moreover, only half of the RCI comes from uncertain
GR4J parameters. The most striking result to emerge from
the RCI results is that the parameter uncertainty is dominat-
ing the total uncertainty in the HBV model outputs. It is
somewhat surprising that nearly all uncertainty comes from
the HBV parameters. Parameter interactions in the HBV
model can be the main reason for the unexpected total
uncertainty which is not the sum of the three sources of
uncertainty. Interestingly, the results, as shown in Figure 4,
indicate that input uncertainty is even smaller than initial
condition uncertainty. On the one hand, this is not expected
as ensemble meteorological forecasts are assumed to be
one of the most important uncertainty sources in stream-
flow forecasts [Engeland et al., 2010; Thirel et al., 2008;
Vrugt et al., 2008; Zappa et al., 2011]. On the other hand,
the large range of soil moisture related parameters ran-
domly selected from the GLUE behavioral parameter set
could enhance the impact of initial condition uncertainty
compared to input uncertainty from only 51 P and PET

Figure 5. Effect of different uncertainty sources on reliability of 10 day low flow forecasts with GR4J
and HBV as a function of two low flow thresholds (i.e., Q75 and Q95).
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forecast ensemble members. In other words, the dominating
effect of parameter uncertainty certainly determines the
impact of the initial condition uncertainty due to the param-
eters used in the storage update procedure. Moreover, dur-
ing low flow periods slow responding processes like
groundwater are more dominant than precipitation as low
flows usually occur after prolonged dry periods. This can
explain the smaller effect of uncertainty from precipitation
compared to the uncertainty from initial conditions. The
total uncertainty in 10 day lead time low flow forecasts is
not a linear sum of three uncertainty sources in the HBV
model due to parameter interactions. This finding is in
agreement with the findings of Zappa et al. [2011] who
showed the full spread obtained from uncertainty superpo-
sition of three sources is growing nonlinearly for a hydro-
logical model (i.e., PREVAH (PREecipitation-Runoff-
EVApotranspiration)) similar to HBV.

4.3. Effect of Uncertainty on Reliability of Low Flow
Forecasts

[57] Figure 5 compares the reliability of 10 day ensemble
forecasts of low flows for below Q75 and Q95 thresholds
using the GR4J and HBV models. Figure 5 exhibits the por-
tion of observed data inside predefined forecast intervals.
The reliability plots based on forecasts associated with dif-
ferent uncertainties show that GR4J and HBV overestimate
or underestimate middle forecast intervals, but the narrow-
est (i.e., 0%–20%) and the 90% intervals are correctly esti-
mated. From Figure 5 we see clearly that the ensemble Q75
forecasts issued by HBV including only the input uncertainty
are the most reliable forecasts, and it is confirmed that GR4J
provides too wide forecast intervals if all sources of uncer-
tainty are included. The plot for the evaluation of the Q75

forecasts using the HBV model in Figure 5 shows that the
average overestimation for the total uncertainty is �25%
inside the highest interval bin (i.e., 80%–100%). The Q75
low flow event will then occur in only �75% of the cases
when it is forecasted to almost certainly happen, indicating
that every fourth low flow warning will be a false alarm. Ini-
tial condition uncertainty has less effect than parameter
uncertainty on the reliability of Q75 forecasts by the two
models. For the Q95 low flows, all intervals except for the
narrowest interval (i.e., 0%–20%) are overestimated by the
HBV model. A comparison of the four subplots in Figure 5
reveals that the parameter uncertainty has a negative effect
on the reliability of the forecasts. Moreover, the overestima-
tion of the GR4J model and underestimation of the HBV
model are also visible in Figure 5. Finally, the forecasts of
extreme low flows (Q95) issued by the GR4J model are
more reliable than the forecasts by the HBV model.

4.4. Effect of Uncertainty on Contingency Table of
Low Flow Forecasts: Hits and False Alarms

[58] From operational point of view, the main purpose of
investigating uncertainty from 10 day ensemble low flow
forecasts is to improve the forecasts (e.g., hits) and to reduce
false alarms and missed targets in the low flow contingency
measures. Figure 6 shows the comparison between the GR4J
and HBV models, based on the number of hits, false alarms,
misses, and correct rejections for the preselected Q75 low
flow events. It should be noted that a threshold probability of
0.5 is used to issue a low flow forecast alarm from 10,000
forecasts each day in the test period. Subsequently, a low
flow event is assumed to occur if more than half of the
10,000 forecasts are low flows. Subsequently, the 10,000 �
1461 forecast ensemble matrix is transformed to a 1 � 1461

Figure 6. Effect of different uncertainty sources on contingency table. Percentage of (a) hits, (b) false
alarms, (c) misses, and (d) correct rejections, to total warnings for 10 day ahead forecasts issued in the
test period (i.e., 1461 warnings in the test period).
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binary vector consists of zero (no low flow) and one (low
flow) values by applying the aforementioned warning thresh-
old of 0.5. This corresponds to a total of 1461 forecasts di-
vided into four subplots in Figure 6. The threshold approach
was not necessary for the deterministic run as we run the
models only one time with calibrated parameters and control
forecasts. The y axes of the subplots show the percentage of
different contingency measures for each evaluated uncer-
tainty source, i.e., input, parameter, initial condition, and
total. We are aware that the contingency table is very sensi-
tive to the preselected threshold and the number of forecasts
[Devineni et al., 2008]. From Figure 6a, we can clearly see
that the two models perform similar for the deterministic
run, whereas the number of hits declines for the GR4J model
forecasts for the total uncertainty. This suggests that adding
parameter uncertainty to the model certainly reduces the
number of hits. This is what we have seen also in Figure 3a.
In case of the HBV model, there is no drop in the number of
hits indicating that most of the low flow events (a total of
567 events in the test period) are correctly forewarned by the
ensemble forecasts. This is a significant success for a hydro-
logical model calibrated for low flows. Moreover, nonoccur-
rence of low flow events was also correctly indicated by the
HBV model. This could be inferred from the correct rejec-
tions plot in Figure 6d.

[59] The most striking result to emerge from Figure 6b is
that the percentage of false alarms is highest (�50%) for
the forecasts issued by HBV including only input uncer-

tainty. This may seem contradictory with the results pre-
sented in Figure 5 as the same ensemble forecasts have
been indicated as the most reliable forecasts. However, it
should be noted that these two quality measures evaluate
the forecasts from totally different aspects, namely, the reli-
ability diagram for the reliability and the contingency table
for the sharpness of the forecasts [WMO, 2012].

[60] Figure 7 shows the utility of the low flow fore-
casts as a function of lead time using the hit rate and the
false-alarm rate derived from contingency tables. What
is surprising is that the hit rate of GR4J drops signifi-
cantly from 0.9 to 0.1 by increasing the lead time,
whereas the hit rate of HBV is slightly increased from
0.9 to 1. Another important finding was that the hit rate
and false-alarm rate of the GR4J and HBV models do not
vary significantly as a function of lead time for the deter-
ministic forecasts. Moreover, the false-alarm rate of
GR4J does not change considerably by increasing the
lead time and for different uncertainty sources. The drop
in false-alarm rate is higher for the HBV model. The im-
portance of parameter uncertainty for both models can be
clearly seen in Figure 7. The effect of the storage updat-
ing procedure and input uncertainty on both models out-
puts is much smaller.

[61] The findings of the current study (see Figure 7) are
consistent with those of Zappa et al. [2011] who found
slight decreases in the hit rates of low flow forecasts for a
lead time of 1 day and 5 days.

Figure 7. Effect of different uncertainty sources on hit/false-alarm rate of two models as a function of
different lead times.
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5. Conclusions

[62] The performance of two hydrological models in
the calibration, validation, and forecast periods have
been compared, and the effect of different uncertainty
sources on the quality of 10 day low flow forecasts has
been assessed. We applied a systematic uncertainty anal-
ysis to identify where the uncertainty comes from and to
provide quantified model output uncertainty information
to make a robust model comparison. A hybrid perform-
ance metric is used for evaluating low flow simulations,
whereas the quality of the probabilistic low flow fore-
casts has been assessed based on relative confidence
intervals, reliability, and hit/false-alarm rates. Based on
the results presented in this study we can draw the fol-
lowing conclusions.

[63] (1) The 10 day ensemble forecast results show that
the daily observed low flows are captured by the 90% con-
fidence interval for both models most of the time. However,
the GR4J model usually overestimates low flows, whereas
HBV is prone to underestimate low flows. This is particu-
larly the case if the parameter uncertainty is included into
the forecasts.

[64] (2) The total uncertainty in the GR4J model outputs
is higher than in the HBV model.

[65] (3) The parameter uncertainty has the highest effect,
and the input uncertainty has the smallest effect on the low
flow forecasts.

[66] (4) A direct relation is found between the number of
parameters and the parameter uncertainty according to the
RCI results.

[67] (5) The parameter uncertainty for 10 day low flow
forecasts issued by the HBV model with eight parameters
is almost half of the parameter uncertainty coming from the
GR4J with four parameters. This is because the rainfall-
runoff process resulting in low flows in the study area is
better described by the HBV model.

[68] (6) The forecast distribution based on 10 day low
flow forecasts (i.e., Q75) issued by the HBV model was the
most reliable forecast distribution if only input uncertainty
is considered.

[69] (7) The number of hits is about equal for two models
only if the input uncertainty is considered. The parameter
uncertainty was the main reason reducing the number of hits.

[70] (8) The deterministic forecasts using the GR4J and
HBV resulted in similar performance indices and also simi-
lar hit false-alarm rates.

[71] (9) The performance of the HBV model for correct
rejections is remarkable, indicating that the model is not
only successful for low flows, but also correctly indicates
other flows above the Q75 threshold while being calibrated
on low flows below Q75.

[72] (10) The number of false alarms is almost doubled for
the GR4J model considering total uncertainty. The importance
of parameter uncertainty on the quality of forecast is empha-
sized by all forecast quality measures used in this study.

[73] In essence, this paper has shown that the output from
two conceptual hydrological models, calibrated for a me-
dium sized �27.000 km2 river basin, fed by raw ECMWF
meteorological forecasts, is characterized by substantial
uncertainty from model parameters. This source of uncer-
tainty effects both the reliability and the sharpness of the

forecasts. This finding is new for low flow forecasts as the
significance of the rainfall prediction error is well known
and documented for high flows [Pappenberger et al., 2005].
This study has taken a step in the direction of assessing
major sources of uncertainties in medium-range low flow
forecasts, in addition to flood forecasts for the Moselle
River. However, further research has to be conducted on the
effect of uncertainties on seasonal low flow forecasts using
coarse seasonal weather products. Different types of models,
especially data-driven models, may be considered to include
in the uncertainty analysis framework for assessing model
structure uncertainty explicitly.
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